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Introduction

Random matrix theory

Random matrix was first introduced by Wishart in mathematical statistics.
It got significant attention after Wigner (in 1955) used the statistical
properties of the eigenvalues of certain random matrix to study the nuclear
energy levels.

Anderson tight binding model

Another important model was proposed by P W Anderson (in 1958), for
studying spin wave diffusion over doped semi-conductors. The model is
described by a random self-adjoint operator on infinite dimensional Hilbert
space.
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Introduction

The main question I will be focusing on here is about the absolute
continuity of Limiting Spectral Distribution for random Toeplitz and
Hankel matrices.
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Wigner Random Matrix

Wigner matrix is

MN =
1√
N


X1,1 X1,2 · · · X1,N

X2,1 X2,2 · · · X2,N
...

...
. . .

...
XN,1 XN,2 · · · XN,N

 ,

where Xi,j = Xj,i are random variables following N(0, 1).

Let {EN,i}i denote the eigenvalues of MN and define the empirical
distribution of the eigenvalues by

LN (·) =
1

N

∑
i

δEN,i(·).

This is a random measure and one of the primary result is

LN →
1

2π

√
4− x2χ{|x|<2}dx

weakly, almost surely.
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Wigner Random Matrix

The limiting spectral distribution for the Wigner matrix is determined
by computing the limits of moments and showing

lim
N→∞

1

N
tr(M2k

N ) =
(2k)!

k!(k + 1)!
.

Thus the limiting measure turns out to be the semi-circle law.

This is clearly an absolutely continuous measure.
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Discrete Schrödinger operator

On `2(Z) consider the operator

(Hωu)n = un+1 + un−1 + ωnun n ∈ Z, u ∈ `2(Z).

Where {ωn}n are i.i.d real random variable following distribution ρ.

Consider the finite cut-off operator Hω
L on `2({−N, · · · , N}) and let

{EL,i}i to be its eigenvalues. Define

LN (·) =
1

2N + 1

∑
i

δEL,i(·)

Denoting EHω to be the spectral measure for Hω, we know

LN (·)→ E
ω

[〈δ0|EHω(·)|δ0〉] a.s.

In general, the limiting distribution may not be absolutely continuous.
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Absolute continuity of Limiting Spectral
Distribution
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Borel-stieltjes transform

One of the ways to study absolute continuity of a measure is through
Borel-stieltjes transform.

Given a probability measure µ, the Borel-stieltjes transform is

µ̂(z) =

∫
dµ(t)

t− z
If µ is absolutely continuous, we can recover the density of µ using

dµ

dx
(x) = lim

ε↓0

1

π
=µ̂(x+ ιε) a.e x.
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Absolute continuity of LSD for discrete Anderson model

Therefore for regularity properties of the LSD, we study

G(z) = E
ω

[=〈δ0|(Hω − z)−1|δ0〉] z ∈ C+.

Using resolvent equation, one has

〈δ0|(Hω − z)−1|δ0〉 =
1

ω0 − hω|ω0(z)
,

where hω|ω0 is independent of ω0 and satisfies

=hω|ω0(z) > 0 for =z > 0.

Hence

G(z) = E
ω|ω0

[
=
∫

ρ(ω0)dω0

ω0 − hω|ω0(z)

]
≤ π ‖ρ‖∞

for z ∈ C+. In particular, the Limiting spectral distribution for
discrete Schrödinger operator is absolutely continuous with L∞

density.
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Random (symmetric) Toeplitz/Hankel matrix
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Random (symmetric) Toeplitz/Hankel matrix

Let {Xn}∞n=0 be sequence of i.i.d real random variable following N(0, 1)
(normal distribution):

Random Toeplitz matrix MN is given by

[MN ]i,j =
1√
N
X|i−j| 1 ≤ i, j ≤ N

Random Hankel matrix MN is given by

[MN ]i,j =
1√
N
Xi+j−2 1 ≤ i, j ≤ N
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Main result

Theorem

Let {Xn}∞n=0 be i.i.d real random variables following N(0, 1). Then

The limiting spectral distribution for random Toeplitz matrix

[N−
1
2X|i−j|]1≤i,j≤N is absolutely continuous with bounded density.

The limiting spectral distribution for random Hankel matrix

[N−
1
2Xi+j−2]1≤i,j≤N is absolutely continuous with bounded density.
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Previous results

Random (symmetric) Toeplitz matrix

Bryc, Dembo and Jiang (2006) showed that the LSD exists for
random (symmetric) Toeplitz and Hankel matrices. It was shown by
the method of moments.

Sen and Virag (2011) showed that the LSD for random Toeplitz
matrix is absolutely continuous by embedding it in a Circulant matrix
and using spectral averaging method.
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Random (symmetric) Toeplitz matrix

Given a random Toeplitz matrix MN = [N−
1
2X|i−j|]1≤i,j≤N where Xn are

i.i.d r.v following N(0, 1) and N is odd, we have

We can write MN = AN +BN .

AN and BN are symmetric and independent of each other.

We can write

AN = Y0 +

N−1
2∑
i=1

Yi(C
i
N + (C∗N )i) & BN =

N−1
2∑
i=1

Zi(D
i
N + (D∗N )i)

where

CN =


0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1
1 0 · · · · · · 0

 & DN =


0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1
−1 0 · · · · · · 0


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Set Yi =
Xi+XN−i

2 with Y0 = X0 and define AN to be

1√
N



Y0 Y1 · · · YN−1
2

YN−1
2
· · · Y2 Y1

Y1
. . .

. . .
. . .

. . .
. . .

. . . Y2
...

. . .
. . .

. . .
. . .

. . .
. . .

...

YN−1
2

. . .
. . .

. . .
. . .

. . .
. . . YN−1

2

YN−1
2

. . .
. . .

. . .
. . .

. . .
. . . YN−1

2
...

. . .
. . .

. . .
. . .

. . .
. . .

...

Y2
. . .

. . .
. . .

. . .
. . .

. . . Y1
Y1 Y2 · · · YN−1

2
YN−1

2
· · · Y1 Y0



Regularity of LSD for patterned matrices Random Toeplitz matrix 16 / 27



Set Zi =
Xi−XN−i

2 and define BN to be

1√
N



0 Z1 · · · ZN−1
2

−ZN−1
2
· · · −Z2 −Z1

Z1
. . .

. . .
. . .

. . .
. . .

. . . −Z2
...

. . .
. . .

. . .
. . .

. . .
. . .

...

ZN−1
2

. . .
. . .

. . .
. . .

. . .
. . . −ZN−1

2

−ZN−1
2

. . .
. . .

. . .
. . .

. . .
. . . ZN−1

2
...

. . .
. . .

. . .
. . .

. . .
. . .

...

−Z2
. . .

. . .
. . .

. . .
. . .

. . . Z1

−Z1 −Z2 · · · −ZN−1
2

ZN−1
2

· · · Z1 0


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Random (symmetric) Toeplitz matrix

The eigenvectors of AN and BN are fixed.

The eigenvalues are given by

EAN ,j =
Y0√
N

+
2√
N

N−1
2∑
i=1

Yi cos
2πij

N

EBN ,j =
2√
N

N−1
2∑
i=1

Zi cos
π(2j + 1)i

N
.

The eigenvalues follows gaussian distribution and

E[EAN ,iEAN ,j ] =
1

2
δi−j −

1

2N
+

1

2
δiδj 0 ≤ i, j ≤ N − 1

2
.
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Random (symmetric) Toeplitz matrix

Since eigenvectors are independent of the configuration, we can write

AN =

N−1
2∑
i=0

EAN ,iPi

where Pi are rank 2 projections.

Viewing

MN = AN +BN = BN +
∑
i

EAN ,iPi,

where EAN ,i are independent real gaussian random variables.

Defining

M̃N,i = BN +
∑
j 6=i

EAN ,jPj ,

we can view EAN ,i as independent of M̃N,i.
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Random (symmetric) Toeplitz matrix

To study the LSD, we are going to use the Borel-stieltjes transform,
hence

1

N
E[=tr((MN − z)−1)] z ∈ C+

We have

E[=tr((MN − z)−1)]

=

N−1
2∑
i=0

E
[
=tr

(
Pi

(
M̃N,i + EAN ,iPi − z

)−1
Pi

)]
where we can use the spectral averaging technique.
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Spectral Averaging result

Given a self adjoint operator A and a normalized vector ψ in a
separable Hilbert space H set Aλ = A+ λ|ψ〉〈ψ|. Then∫

〈ψ,EAλ(·)ψ〉dλ = D| · |,

where | · | is the Lebesgue measure on R.

The perturbation can be replaced by a bounded non-negative
operator with an appropriate modification of the integrand.

Spectral averaging for rank 2 perturbation

Given a self adjoint operator A and a rank 2 projection P , define
Aλ = A+ λP , then for a probability density ρ with bounded density∫

tr(PEAλ(I)P )ρ(λ)dλ ≤ D ‖ρ‖∞ |I|.
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Random Hankel matrix

Similar to Toeplitz matrix case, given random Hankel matrix
MN = [N−

1
2Xi+j−2]1≤i,j≤N , where Xn are i.i.d r.v following N(0, 1) and

N is odd, we have

Write MN = ÃN + B̃N

ÃN and B̃N are symmetric and independent of each other.

Let φθ = (1, eιθ, · · · , eι(N−1)θ)t. Then we have the relations

ÃNφ 2πj
N

= λjφ− 2πj
N

where

λj =
1√
N

∑
i

Yie
ι
2πj(i−1)

N ,

which can be compactly written as

ÃN

(
φ 2πj

N

φ− 2πj
N

)
=

(
0 λj
λj 0

)(
φ 2πj

N

φ− 2πj
N

)
.
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ÃN =
1√
N


Y1 Y2 · · · YN−1 YN
Y2 Y3 · · · YN Y1
...

...
...

...
...

YN−1 YN
...

... YN−2
YN Y1 · · · YN−2 YN−1


here Yi =

Xi+XN+i

2 (will use YN = XN )

B̃N =
1√
N


Z1 Z2 · · · ZN−1 0
Z2 Z3 · · · 0 −Z1
...

...
...

...
...

ZN−1 0
...

... −ZN−2
0 −Z1 · · · −ZN−2 −ZN−1

 ,

here Zi =
Xi−XN+i

2 .
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Random Hankel matrix

Denoting Lj,λ = λ|φ 2πj
N
〉〈φ− 2πj

N
|+ λ̄|φ− 2πj

N
〉〈φ 2πj

N
| and

Pj = |φ 2πj
N
〉〈φ 2πj

N
|+ |φ− 2πj

N
〉〈φ− 2πj

N
| we can write

E
[
tr((MN − z)−1)

]
=

N−1
2∑
j=1

E
[
tr(Pj(M̃N,j + Lj,λj − z)

−1Pj)
]

we can follow similar steps as before.

For absolute continuity, we need to estimate

lim
=z↓0

∫
C
=tr(Pj(M̃N,j + Lj,λ − z)−1Pj)e−|λ|

2
dλ

The main problem is Lj,λ is not a non-negative operator and so
spectral averaging does not work.
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Random Hankel matrix

Note that MN is real symmetric, so all the eigenvectors are in RN .

Also note that 〈φθ, ψ〉 = 〈φ−θ, ψ〉 for ψ ∈ RN .

Denoting {En}n to be eigenvalues of MN and {ψn}n as the
eigenfunctions, we have

〈φθ|(MN − z)−1|φθ〉 =
∑
n

|〈φθ, ψ〉|2

En − z
= 〈φ−θ|(MN − z)−1|φ−θ〉.

All these leads to estimating integrals of the form

lim
ε↓0

∫
C

εf(λ)

g(λ)2 + ε2h(λ)2
dλ

for certain f, g, h : C→ R which are smooth.
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Random Hankel matrix

Using co-area formula, previous expression is given by

π

∫
g−1{0}

f(λ)

|∇g(λ)|h(λ)
dσ(λ)

where σ is the line measure on g−1{0}.
In the case of random Hankel matrix, upper bounding above
expression boils down to

sup
z0∈C
r>0

r

∫ 2π

0
e−|z0+re

ιθ|2dθ

This concludes the proof of absolute continuity.
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