Polymer geometry in the large deviation regime via eigenvalue rigidity

Shirshendu Ganguly

UC Berkeley

UNIVERSALITY IN RANDOM STRUCTURES: INTERFACES,
MATRICES, SANDPILES,
ICTS, Bangalore, 14 Jan-08 Feb, 2019.

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.
- π : directed path from $(0,0)$ to (n, n).

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.
- π : directed path from $(0,0)$ to (n, n).
- The last passage time from $(0,0)$ to (n, n).

$$
T_{n}=\max _{\pi} \sum_{(i, j) \in \pi} X_{i, j}
$$

\vdots					
\vdots				$X_{i j}$	
X_{41}					
X_{31}	\cdots				
X_{21}	X_{22}	X_{23}	\cdots		
X_{11}	X_{12}	X_{13}	X_{14}	\cdots	\cdots

$X_{i j} \sim$ i.i.d. F positive random weights

Weight maximizing path Γ_{n} will be called the polymer.

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.
- π : directed path from $(0,0)$ to (n, n).
- The last passage time from $(0,0)$ to (n, n).

$$
T_{n}=\max _{\pi} \sum_{(i, j) \in \pi} X_{i, j}
$$

\vdots					
\vdots				$X_{i j}$	
X_{41}					
X_{31}	\cdots				
X_{21}	X_{22}	X_{23}	\cdots		
X_{11}	X_{12}	X_{13}	X_{14}	\cdots	\cdots

$X_{i j} \sim$ i.i.d. F positive random weights

Weight maximizing path Γ_{n} will be called the polymer.
Major objects of study

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.
- π : directed path from $(0,0)$ to (n, n).
- The last passage time from $(0,0)$ to (n, n).

$$
T_{n}=\max _{\pi} \sum_{(i, j) \in \pi} X_{i, j}
$$

\vdots					
\vdots				$X_{i j}$	
X_{41}					
X_{31}	\cdots				
X_{21}	X_{22}	X_{23}	\cdots		
X_{11}	X_{12}	X_{13}	X_{14}	\cdots	\cdots

$X_{i j} \sim$ i.i.d. F positive random weights

Weight maximizing path Γ_{n} will be called the polymer.
Major objects of study

- Asymptotics of T_{n}.

Directed Last Passage Percolation (LPP) on \mathbb{Z}^{2}

- Put i.i.d. positive weights on each vertex of \mathbb{Z}^{2}.
- π : directed path from $(0,0)$ to (n, n).
- The last passage time from $(0,0)$ to (n, n).

$$
T_{n}=\max _{\pi} \sum_{(i, j) \in \pi} X_{i, j}
$$

\vdots					
\vdots				$X_{i j}$	
X_{41}					
X_{31}	\cdots				
X_{21}	X_{22}	X_{23}	\cdots		
X_{11}	X_{12}	X_{13}	X_{14}	\cdots	\cdots

$X_{i j} \sim$ i.i.d. F positive random weights

Weight maximizing path Γ_{n} will be called the polymer.
Major objects of study

- Asymptotics of T_{n}.
- Asymptotics of the path Γ_{n}.

Connections to particle systems and growth process

- Totally asymmetric exclusion process on \mathbb{Z} (TASEP): particles at rate 1 jump to the right provided the site is empty.

Exponential LPP is equivalent to this model, where the passage times between $(0,0)$ and (N, N) denote the time taken by the $N^{t h}$ particle to reach 0 starting from wedge initial conditions.

- Equivalent to corner growth process.

Connections to particle systems and growth process

- Totally asymmetric exclusion process on \mathbb{Z} (TASEP): particles at rate 1 jump to the right provided the site is empty.

Exponential LPP is equivalent to this model, where the passage times between $(0,0)$ and (N, N) denote the time taken by the $N^{t h}$ particle to reach 0 starting from wedge initial conditions.

- Equivalent to corner growth process.
- Hammersley process: A particle system on \mathbb{R} where particles at rate one jump to their right to a uniform location between the next particle.

Connections to particle systems and growth process

- Totally asymmetric exclusion process on \mathbb{Z} (TASEP): particles at rate 1 jump to the right provided the site is empty.

Exponential LPP is equivalent to this model, where the passage times between $(0,0)$ and (N, N) denote the time taken by the $N^{t h}$ particle to reach 0 starting from wedge initial conditions.

- Equivalent to corner growth process.
- Hammersley process: A particle system on \mathbb{R} where particles at rate one jump to their right to a uniform location between the next particle.
(Connected to the problem of Poissonian Last Passage percolation: Longest path passing through a Poisson field of points).

Connections to particle systems and growth process

- Totally asymmetric exclusion process on \mathbb{Z} (TASEP): particles at rate 1 jump to the right provided the site is empty.

Exponential LPP is equivalent to this model, where the passage times between $(0,0)$ and (N, N) denote the time taken by the $N^{t h}$ particle to reach 0 starting from wedge initial conditions.

- Equivalent to corner growth process.
- Hammersley process: A particle system on \mathbb{R} where particles at rate one jump to their right to a uniform location between the next particle.
(Connected to the problem of Poissonian Last Passage percolation: Longest path passing through a Poisson field of points).
- Equivalent to Poly-nuclear growth model (PNG).

Maximal increasing subsequence/ Poissonian LPP

Maximal increasing subsequence/ Poissonian LPP

- Longest increasing subsequence of a random permutation.

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

- $\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu_{F}$;

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

- $\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu_{F}$;
- $\lim _{n \rightarrow \infty} \frac{T_{n x, n y}}{n}=g_{F}(x, y)$.

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

- $\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu_{F}$;
- $\lim _{n \rightarrow \infty} \frac{T_{n x, n y}}{n}=g_{F}(x, y)$.
- Boundary of the limit shape $\{(x, y): g(x, y)=1\}$ is convex.

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

- $\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu_{F}$;
- $\lim _{n \rightarrow \infty} \frac{T_{n x, n y}}{n}=g_{F}(x, y)$.
- Boundary of the limit shape $\{(x, y): g(x, y)=1\}$ is convex.
- Under mild conditions, Poincáre inequality ensures that $\operatorname{Var} T_{n}=O(n)$.

Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman's subadditive Ergodic theorem, that almost surely and in L^{1},

- $\lim _{n \rightarrow \infty} \frac{T_{n}}{n}=\mu_{F}$;
- $\lim _{n \rightarrow \infty} \frac{T_{n x, n y}}{n}=g_{F}(x, y)$.
- Boundary of the limit shape $\{(x, y): g(x, y)=1\}$ is convex.
- Under mild conditions, Poincáre inequality ensures that $\operatorname{Var} T_{n}=O(n)$.
- Γ_{n} w.h.p. has deviation $o(n)$ from the straight line joining $(0,0)$ to (n, n) under strict convexity of the limit shape boundary at $(1,1)$.

KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions on F, LPP models (and many other related models) should exhibit certain universal behavior governed by the KPZ equation.

KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions on F, LPP models (and many other related models) should exhibit certain universal behavior governed by the KPZ equation.

- Longitudinal fluctuation exponent of $1 / 3$;

KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions on F, LPP models (and many other related models) should exhibit certain universal behavior governed by the KPZ equation.

- Longitudinal fluctuation exponent of $1 / 3$;
- Transversal fluctuation exponent of $2 / 3$; (locally Brownian vs globally parabolic).

KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions on F, LPP models (and many other related models) should exhibit certain universal behavior governed by the KPZ equation.

- Longitudinal fluctuation exponent of $1 / 3$;
- Transversal fluctuation exponent of $2 / 3$; (locally Brownian vs globally parabolic).
- Tracy-Widom type scaling limits;

KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions on F, LPP models (and many other related models) should exhibit certain universal behavior governed by the KPZ equation.

- Longitudinal fluctuation exponent of $1 / 3$;
- Transversal fluctuation exponent of $2 / 3$; (locally Brownian vs globally parabolic).
- Tracy-Widom type scaling limits;
- and much more...

Transversal fluctuation

- For the anti-diagonal line $\{x+y=t\}$, let the polymer intersect it at $(x(t), y(t))$.

Globally Parabolic vs Locally Brownian

- The polymer passes through the points where the parabolic loss matches with Brownian fluctuation: $\frac{x^{2}}{n} \approx \sqrt{x}$.

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

- Last passage percolation on \mathbb{Z}^{2} with Exponential, and Geometric weights.

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

- Last passage percolation on \mathbb{Z}^{2} with Exponential, and Geometric weights.
- Last passage percolation in a Poissonian field on \mathbb{R}^{2} / longest increasing subsequence in a random permutation.

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

- Last passage percolation on \mathbb{Z}^{2} with Exponential, and Geometric weights.
- Last passage percolation in a Poissonian field on \mathbb{R}^{2} / longest increasing subsequence in a random permutation.
- O'Connell-Yor polymer/ Brownian LPP, Dyson Brownian motion.

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

- Last passage percolation on \mathbb{Z}^{2} with Exponential, and Geometric weights.
- Last passage percolation in a Poissonian field on \mathbb{R}^{2} / longest increasing subsequence in a random permutation.
- O'Connell-Yor polymer/ Brownian LPP, Dyson Brownian motion.
- Some other positive temperature models like Log-Gamma Polymer, Continuum Directed Random Polymer (solution to the Stochastic Heat Equation).

Integrable Models

KPZ prediction has been rigorously verified only for a handful of integrable models of LPP:

KPZ revolution (1999-)

- Last passage percolation on \mathbb{Z}^{2} with Exponential, and Geometric weights.
- Last passage percolation in a Poissonian field on \mathbb{R}^{2} / longest increasing subsequence in a random permutation.
- O'Connell-Yor polymer/ Brownian LPP, Dyson Brownian motion.
- Some other positive temperature models like Log-Gamma Polymer, Continuum Directed Random Polymer (solution to the Stochastic Heat Equation).

Based on bijections, exact formulae and connections to algebraic combinatorics, representation theory, determinantal processes, random matrix theory.

Integrable/Exactly Solvable Models

Integrable/Exactly Solvable Models

Poissonian LPP

- RSK correspondence to Young Tableaux.
- $\frac{\mathbb{E} T_{n x, n y}}{n}=2 \sqrt{x y}$.
- $\frac{T_{n}-2 n}{n^{1 / 3}} \rightarrow F_{T W}$.

Integrable/Exactly Solvable Models

Poissonian LPP

- RSK correspondence to Young Tableaux.
- $\frac{\mathbb{E} T_{n x, n y}}{n}=2 \sqrt{x y}$.
- $\frac{T_{n}-2 n}{n^{1 / 3}} \rightarrow F_{T W}$.
- Similar results known for Geometric LPP by using connections to generalized permutations. Passing to the limit one obtains:

Integrable/Exactly Solvable Models

Poissonian LPP

- RSK correspondence to Young Tableaux.
- $\frac{\mathbb{E} T_{n x, n y}}{n}=2 \sqrt{x y}$.
- $\frac{T_{n}-2 n}{n^{1 / 3}} \rightarrow F_{T W}$.
- Similar results known for Geometric LPP by using connections to generalized permutations. Passing to the limit one obtains:

Exponential LPP

- $\frac{\mathbb{E} T_{n x, n y}}{n}=(\sqrt{x}+\sqrt{y})^{2}$.
- $\frac{T_{n}-4 n}{2^{4 / 3} n^{1 / 3}} \rightarrow F_{T W}$.

Integrable/Exactly Solvable Models

Poissonian LPP

- RSK correspondence to Young Tableaux.
- $\frac{\mathbb{E} T_{n x, n y}}{n}=2 \sqrt{x y}$.
- $\frac{T_{n}-2 n}{n^{1 / 3}} \rightarrow F_{T W}$.
- Similar results known for Geometric LPP by using connections to generalized permutations. Passing to the limit one obtains:

Exponential LPP

- $\frac{\mathbb{E} T_{n x, n y}}{n}=(\sqrt{x}+\sqrt{y})^{2}$.
- $\frac{T_{n}-4 n}{2^{4 / 3} n^{1 / 3}} \rightarrow F_{T W}$.
- Transversal fluctuation exponent of $2 / 3$ is also rigorously known using moderate deviations.

Large Deviations for polymer weights

Questions

- What is the probability that T_{n} macroscopically deviates from μn ?
- On the rare large deviation event, what does the polymer look like?

Large Deviations for polymer weights

Questions

- What is the probability that T_{n} macroscopically deviates from μn ?
- On the rare large deviation event, what does the polymer look like?

Upper tail large deviation: $T_{n} \geq(\mu+\delta) n$

- Large deviation speed is n under minimal conditions.

Large Deviations for polymer weights

Questions

- What is the probability that T_{n} macroscopically deviates from μn ?
- On the rare large deviation event, what does the polymer look like?

Upper tail large deviation: $T_{n} \geq(\mu+\delta) n$

- Large deviation speed is n under minimal conditions.

Lower tail large deviation: $T_{n} \leq(\mu-\delta) n$

- Large deviation speed is n^{2} under minimal conditions.

Upper vs Lower tail

n speed for $\left\{T_{n} \geq(\mu+\delta) n\right\}$.

Upper vs Lower tail

Upper vs Lower tail

n speed for $\left\{T_{n} \geq(\mu+\delta) n\right\}$.

Upper vs Lower tail

n speed for $\left\{T_{n} \geq(\mu+\delta) n\right\}$.

- Planting a long path gives the lower bound.
- Standard concentration estimates (Talagrand) or a renormalization argument (Kesten) can be used to prove the upper bound.
- Sub-additivity implies existence of rate function.

n^{2} speed for $\left\{T_{n} \leq(\mu-\delta) n\right\}$.

n^{2} speed for $\left\{T_{n} \leq(\mu-\delta) n\right\}$

- Typically there exists many disjoint paths of length at least $\left(\mu-\frac{\delta}{2}\right) n$.

n^{2} speed for $\left\{T_{n} \leq(\mu-\delta) n\right\}$.

- Typically there exists many disjoint paths of length at least $\left(\mu-\frac{\delta}{2}\right) n$.
- The probability that the weight of any one of those paths is lower than typical is $e^{-\Theta(n)}$.
n^{2} speed for $\left\{T_{n} \leq(\mu-\delta) n\right\}$.
- Typically there exists many disjoint paths of length at least $\left(\mu-\frac{\delta}{2}\right) n$.
- The probability that the weight of any one of those paths is lower than typical is $e^{-\Theta(n)}$.
- The large deviation event implies all the paths are short.

n^{2} speed for $\left\{T_{n} \leq(\mu-\delta) n\right\}$.

- Typically there exists many disjoint paths of length at least $\left(\mu-\frac{\delta}{2}\right) n$.
- The probability that the weight of any one of those paths is lower than typical is $e^{-\Theta(n)}$.
- The large deviation event implies all the paths are short.

The above argument already appeared in Kesten's work on First passage percolation.

Large deviation for exactly solvable models

Large deviation for exactly solvable models

For Poissonian LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(2+\delta) n\right)}{n}=-I_{u}(\delta)$ where $I_{u}(\cdot)$ is an increasing convex function with $I(0)=0$.

Large deviation for exactly solvable models

For Poissonian LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(2+\delta) n\right)}{n}=-I_{u}(\delta)$ where $I_{u}(\cdot)$ is an increasing convex function with $I(0)=0$.
- For $\delta \in(0,2), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(2-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.

Large deviation for exactly solvable models

For Poissonian LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(2+\delta) n\right)}{n}=-I_{u}(\delta)$ where $I_{u}(\cdot)$ is an increasing convex function with $I(0)=0$.
- For $\delta \in(0,2), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(2-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using Young Tableaux combinatorics/ Hammersley process connections.

Large deviation for exactly solvable models

For Poissonian LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(2+\delta) n\right)}{n}=-I_{u}(\delta)$ where $I_{u}(\cdot)$ is an increasing convex function with $I(0)=0$.
- For $\delta \in(0,2), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(2-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using Young Tableaux combinatorics/ Hammersley process connections.
- Via RSK, this is exactly the number of permutations with a given length for the longest increasing subsequence.

Upper tail LDP

- Longest increasing subsequence of a permutation has the same law as the top row of a Young Tableaux sampled from the Plancherel measure.

Upper tail LDP

- Longest increasing subsequence of a permutation has the same law as the top row of a Young Tableaux sampled from the Plancherel measure.
- Using this Kim proved the upper bound.

Upper tail LDP

- Longest increasing subsequence of a permutation has the same law as the top row of a Young Tableaux sampled from the Plancherel measure.
- Using this Kim proved the upper bound.
- Logan and Shepp had solved a variational problem connected to the number of Young diagrams with a given length for the top row.

Upper tail LDP

- Longest increasing subsequence of a permutation has the same law as the top row of a Young Tableaux sampled from the Plancherel measure.
- Using this Kim proved the upper bound.
- Logan and Shepp had solved a variational problem connected to the number of Young diagrams with a given length for the top row.
- Deuschel and Zeitouni (1999) proved the lower bound using such variational results.

Young diagrams and Plancherel measure

$$
\mathbb{P}\left(T_{n}=k\right)=\sum_{\tau(0)=k} \frac{n!}{\pi(\tau)^{2}}
$$

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.
- For $\delta \in(0,4), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(4-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.
- For $\delta \in(0,4), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(4-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using random matrix theory/ orthogonal polynomials.

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.
- For $\delta \in(0,4), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(4-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using random matrix theory/ orthogonal polynomials.

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.
- For $\delta \in(0,4), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(4-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using random matrix theory/ orthogonal polynomials.
- Similar results are known for Geometric LPP.

Large deviation for exactly solvable models

For Exponential LPP

- For $\delta>0, \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I_{u}(\delta)$.
- For $\delta \in(0,4), \lim _{n} \frac{\log \mathbb{P}\left(T_{n} \leq(4-\delta) n\right)}{n^{2}}=-I_{\ell}(\delta)$.
- Explicit formulae available using random matrix theory/ orthogonal polynomials.
- Similar results are known for Geometric LPP.
- Coupling with TASEP also has been exploited in analyzing the upper tail.

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?
- For upper tail large deviation in Poissonian LPP, they showed that the path remains close to the diagonal (macroscopically) w.h.p. even on the large deviation event i.e., the fluctuation is at most $o(n)$.

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?
- For upper tail large deviation in Poissonian LPP, they showed that the path remains close to the diagonal (macroscopically) w.h.p. even on the large deviation event i.e., the fluctuation is at most $o(n)$. Follows from the convexity of rate function.

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?
- For upper tail large deviation in Poissonian LPP, they showed that the path remains close to the diagonal (macroscopically) w.h.p. even on the large deviation event i.e., the fluctuation is at most $o(n)$. Follows from the convexity of rate function.
- What is the exponent?

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?
- For upper tail large deviation in Poissonian LPP, they showed that the path remains close to the diagonal (macroscopically) w.h.p. even on the large deviation event i.e., the fluctuation is at most $o(n)$. Follows from the convexity of rate function.
- What is the exponent?
- Nothing was known about the lower tail.

Geometric Consequences of Large Deviations

- Deuschel and Zeitouni (1999) studied what the path looks like conditioned on the large deviation event?
- For upper tail large deviation in Poissonian LPP, they showed that the path remains close to the diagonal (macroscopically) w.h.p. even on the large deviation event i.e., the fluctuation is at most $o(n)$. Follows from the convexity of rate function.
- What is the exponent?
- Nothing was known about the lower tail.

We will focus on Exponential LPP for the rest of the talk.

Transversal fluctuation for upper tail

$$
D_{n}(t):=|x(t)-y(t)| ; D_{n}=\sup _{t} D_{n}(t) .
$$

Transversal fluctuation for upper tail

$$
D_{n}(t):=|x(t)-y(t)| ; \quad D_{n}=\sup _{t} D_{n}(t) .
$$

$$
\begin{aligned}
& \bar{\xi}:=\inf \left\{\xi^{\prime} \leq 1: \limsup _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{\xi^{\prime}} \mid \mathcal{U}_{\delta}\right)=0\right\} \\
& \underline{\xi}:=\sup \left\{\xi^{\prime} \geq 0: \liminf _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{\xi^{\prime}} \mid \mathcal{U}_{\delta}\right)=1\right\} .
\end{aligned}
$$

Transversal fluctuation for upper tail

$$
D_{n}(t):=|x(t)-y(t)| ; D_{n}=\sup _{t} D_{n}(t) .
$$

$$
\begin{aligned}
& \bar{\xi}:=\inf \left\{\xi^{\prime} \leq 1: \limsup _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{\xi^{\prime}} \mid \mathcal{U}_{\delta}\right)=0\right\}, \\
& \underline{\xi}:=\sup \left\{\xi^{\prime} \geq 0: \liminf _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{\xi^{\prime}} \mid \mathcal{U}_{\delta}\right)=1\right\} .
\end{aligned}
$$

If they agree we call the exponent ξ_{δ}.

Transversal fluctuation for upper tail

Theorem (Basu, G. (2019+))
For each $\delta>0, \xi_{\delta}$ exists and is equal to $\frac{1}{2}$.

Transversal fluctuation for upper tail

Theorem (Basu, G. (2019+))
For each $\delta>0, \xi_{\delta}$ exists and is equal to $\frac{1}{2}$.
Theorem (Upper bound)
For a fixed $\delta>0$, for any $\varepsilon>0$,

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{1 / 2+\varepsilon} \mid \mathcal{U}_{\delta}\right) \rightarrow 0
$$

Transversal fluctuation for upper tail

Theorem (Basu, G. (2019+))
For each $\delta>0, \xi_{\delta}$ exists and is equal to $\frac{1}{2}$.

Theorem (Upper bound)
For a fixed $\delta>0$, for any $\varepsilon>0$,

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \geq n^{1 / 2+\varepsilon} \mid \mathcal{U}_{\delta}\right) \rightarrow 0
$$

Theorem (Lower Bound)
Fix $\delta>0$.

$$
\limsup _{n \rightarrow \infty} \mathbb{P}\left(D_{n} \leq h n^{1 / 2} \mid \mathcal{U}_{\delta}\right) \rightarrow 0
$$

as $h \rightarrow 0$.

- We will discuss the proof idea for the upper tail using connections to random matrices and eigenvalue rigidity.
- We will discuss the proof idea for the upper tail using connections to random matrices and eigenvalue rigidity.
- If time permits, towards the end, I will describe what happens for the lower tail.

Key integrable input

Key integrable input

- Let $X_{M \times N}$ denote an $M \times N$ matrix with standard complex Gaussian entries, where $M \geq N$.

Key integrable input

- Let $X_{M \times N}$ denote an $M \times N$ matrix with standard complex Gaussian entries, where $M \geq N$.
- Let $W=W_{N \times N}:=X^{*} X$ denote the complex Wishart matrix, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}$ denote the eigenvalues of W.

Key integrable input

- Let $X_{M \times N}$ denote an $M \times N$ matrix with standard complex Gaussian entries, where $M \geq N$.
- Let $W=W_{N \times N}:=X^{*} X$ denote the complex Wishart matrix, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}$ denote the eigenvalues of W.
- $T_{(1,1),(M, N)}$ denotes the last passage time from $(1,1)$ to (M, N).

Key integrable input

- Let $X_{M \times N}$ denote an $M \times N$ matrix with standard complex Gaussian entries, where $M \geq N$.
- Let $W=W_{N \times N}:=X^{*} X$ denote the complex Wishart matrix, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}$ denote the eigenvalues of W.
- $T_{(1,1),(M, N)}$ denotes the last passage time from $(1,1)$ to (M, N).

Theorem (Johansson)

$$
\lambda_{1} \stackrel{d}{=} T_{(1,1),(M, N)} .
$$

Recall again

For Exponential LPP
Johansson (2000)

- For $\delta>0, \lim _{n \rightarrow \infty} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I(\delta)$.

Recall again

For Exponential LPP

- For $\delta>0, \lim _{n \rightarrow \infty} \frac{\log \mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}{n}=-I(\delta)$.
- Similar results have been proved by Majumdar and Vergassola relying on Coulomb gas methods.

Refined LDP results

Theorem
Let $M=N$ and let $\delta>0$ be fixed. Then

$$
\log \mathbb{P}\left(\lambda_{1}>4+\delta\right)=-N I(\delta)-\log N+O(1)
$$

as $N \rightarrow \infty$.
where $I(\delta):=-2+(4+\delta)-2 \int_{0}^{4} \log (4+\delta-x) \frac{\sqrt{x(4-x)}}{2 \pi x} d x$.

Refined LDP results

Theorem

Let $M=N$ and let $\delta>0$ be fixed. Then

$$
\log \mathbb{P}\left(\lambda_{1}>4+\delta\right)=-N I(\delta)-\log N+O(1)
$$

as $N \rightarrow \infty$.
where $I(\delta):=-2+(4+\delta)-2 \int_{0}^{4} \log (4+\delta-x) \frac{\sqrt{x(4-x)}}{2 \pi x} d x$.

- $I(0)=0$.
- $I^{\prime}(\delta), I^{\prime \prime}(\delta)$ converge to 1 and zero respectively as δ goes to infinity.

Eigenvalue density

$\Lambda_{N}:=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}\right\}$. The joint eigenvalue density of the scaled Wishart matrix $\left(\frac{1}{M} X^{*} X\right)$ is given by:

Eigenvalue density

$\Lambda_{N}:=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}\right\}$. The joint eigenvalue density of the scaled Wishart matrix $\left(\frac{1}{M} X^{*} X\right)$ is given by:

$$
f(\underline{\lambda})=f_{M, N}(\underline{\lambda})=\frac{1}{Z_{M, N}} V(\underline{\lambda})^{2} \prod_{i=1}^{N} \lambda_{i}^{M-N} e^{-M \sum_{i=1}^{N} \lambda_{i}}
$$

Eigenvalue density

$\Lambda_{N}:=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}\right\}$. The joint eigenvalue density of the scaled Wishart matrix $\left(\frac{1}{M} X^{*} X\right)$ is given by:

$$
f(\underline{\lambda})=f_{M, N}(\underline{\lambda})=\frac{1}{Z_{M, N}} V(\underline{\lambda})^{2} \prod_{i=1}^{N} \lambda_{i}^{M-N} e^{-M \sum_{i=1}^{N} \lambda_{i}}
$$

- $V(\underline{\lambda})$ is the Vandermonde term:

$$
\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)
$$

Eigenvalue density

$\Lambda_{N}:=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}\right\}$. The joint eigenvalue density of the scaled Wishart matrix $\left(\frac{1}{M} X^{*} X\right)$ is given by:

$$
f(\underline{\lambda})=f_{M, N}(\underline{\lambda})=\frac{1}{Z_{M, N}} V(\underline{\lambda})^{2} \prod_{i=1}^{N} \lambda_{i}^{M-N} e^{-M \sum_{i=1}^{N} \lambda_{i}}
$$

- $V(\underline{\lambda})$ is the Vandermonde term:

$$
\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)
$$

- Partition function $Z_{M, N}$ is given by

$$
Z_{M, N}=\frac{\prod_{j=0}^{N-1} j!(M-N+j)!}{M^{N M}}
$$

Asymptotics of Partition function

$$
\log \frac{Z_{M-1, N-1}}{Z_{M, N}}=2 N+M-N \log \frac{N}{M}+O(1) .
$$

Coulomb gas methods

- $V\left(\lambda_{1} ; \underline{\lambda}^{(1)}\right):=\prod_{j \neq 1}\left(\lambda_{1}-\lambda_{j}\right)$.

Coulomb gas methods

- $V\left(\lambda_{1} ; \underline{\lambda}^{(1)}\right):=\prod_{j \neq 1}\left(\lambda_{1}-\lambda_{j}\right)$.

$$
\mathbb{P}\left(\lambda_{1} \geq(4+\delta)\right)=\int_{\lambda_{1} \geq(4+\delta)} f_{n, n}(\underline{\lambda}) d \underline{\lambda}
$$

$$
=\frac{Z_{n-1, n-1}}{Z_{n, n}} \int_{\lambda_{1} \geq(4+\delta)} e^{-n \lambda_{1}}\left(\int_{\underline{\lambda}^{(1)}} V\left(\lambda_{1} ; \underline{\lambda}^{(1)}\right)^{2} e^{-\sum_{i=2}^{n} \lambda_{i}} f_{n-1, n-1} d \underline{\lambda}^{(1)}\right) d \lambda_{1}
$$

Coulomb gas methods

- $V\left(\lambda_{1} ; \underline{\lambda}^{(1)}\right):=\prod_{j \neq 1}\left(\lambda_{1}-\lambda_{j}\right)$.

$$
\mathbb{P}\left(\lambda_{1} \geq(4+\delta)\right)=\int_{\lambda_{1} \geq(4+\delta)} f_{n, n}(\underline{\lambda}) d \underline{\lambda}
$$

$$
=\frac{Z_{n-1, n-1}}{Z_{n, n}} \int_{\lambda_{1} \geq(4+\delta)} e^{-n \lambda_{1}}\left(\int_{\underline{\lambda}^{(1)}} V\left(\lambda_{1} ; \underline{\lambda}^{(1)}\right)^{2} e^{-\sum_{i=2}^{n} \lambda_{i}} f_{n-1, n-1} d \underline{\lambda}^{(1)}\right) d \lambda_{1}
$$

where $\lambda^{(1)}=\left(\lambda_{2} \geq \lambda_{3} \geq \ldots, \geq \lambda_{n}\right)$ and the inside integral is restricted to $\lambda_{2}<\lambda_{1}$.

Rearranging the term inside the exponential we get

Rearranging the term inside the exponential we get

$$
\left.\exp \left(2 \sum_{i=2}^{n} \log \left(\lambda_{1}-\lambda_{i}\right)-\sum_{i=2}^{n} \lambda_{i}\right)\right) .
$$

Rearranging the term inside the exponential we get

$$
\left.\exp \left(2 \sum_{i=2}^{n} \log \left(\lambda_{1}-\lambda_{i}\right)-\sum_{i=2}^{n} \lambda_{i}\right)\right)
$$

- The empirical spectral measure $\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ of the matrix $\frac{1}{N} X X^{*}$ converges (as $N \rightarrow \infty$) to the Marcenko-Pastur law MP.

Rearranging the term inside the exponential we get

$$
\left.\exp \left(2 \sum_{i=2}^{n} \log \left(\lambda_{1}-\lambda_{i}\right)-\sum_{i=2}^{n} \lambda_{i}\right)\right) .
$$

- The empirical spectral measure $\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ of the matrix $\frac{1}{N} X X^{*}$ converges (as $N \rightarrow \infty$) to the Marcenko-Pastur law MP.
- (Rigidity) The integral with respect to the empirical spectral measure will be close to that with respect to MP.

Rearranging the term inside the exponential we get

$$
\left.\exp \left(2 \sum_{i=2}^{n} \log \left(\lambda_{1}-\lambda_{i}\right)-\sum_{i=2}^{n} \lambda_{i}\right)\right)
$$

- The empirical spectral measure $\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ of the matrix $\frac{1}{N} X X^{*}$ converges (as $N \rightarrow \infty$) to the Marcenko-Pastur law MP.
- (Rigidity) The integral with respect to the empirical spectral measure will be close to that with respect to MP.

$$
=\exp \left((n-1)\left(2 \int \log \left(\lambda_{1}-x\right) d \mathrm{MP}(x)-\int x d \mathrm{MP}(x)+O(1)\right)\right.
$$

Rearranging the term inside the exponential we get

$$
\left.\exp \left(2 \sum_{i=2}^{n} \log \left(\lambda_{1}-\lambda_{i}\right)-\sum_{i=2}^{n} \lambda_{i}\right)\right)
$$

- The empirical spectral measure $\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}$ of the matrix $\frac{1}{N} X X^{*}$ converges (as $N \rightarrow \infty$) to the Marcenko-Pastur law MP.
- (Rigidity) The integral with respect to the empirical spectral measure will be close to that with respect to MP.

$$
=\exp \left((n-1)\left(2 \int \log \left(\lambda_{1}-x\right) d \mathrm{MP}(x)-\int x d \mathrm{MP}(x)+O(1)\right)\right.
$$

Along with the precise estimate for the partition function this yields that (for a fixed L):

$$
\int_{L>\lambda_{1} \geq(4+\delta)} f_{n, n}(\underline{\lambda}) d \underline{\lambda}=\int_{L>\lambda_{1}>(4+\delta)} e^{-n I\left(\lambda_{1}-4\right)+O(1)} d \lambda_{1}
$$

- For large $L>(4+\delta)$, the probability of $\lambda_{1}>L$ is much smaller and can be ignored.
- For large $L>(4+\delta)$, the probability of $\lambda_{1}>L$ is much smaller and can be ignored.
- Given the expression from the previous slide the final estimate is now obtained by
- For large $L>(4+\delta)$, the probability of $\lambda_{1}>L$ is much smaller and can be ignored.
- Given the expression from the previous slide the final estimate is now obtained by

$$
\begin{aligned}
\int_{L>\lambda_{1} \geq(4+\delta)} f_{n, n}(\underline{\lambda}) d \underline{\lambda} & =\int_{L>\lambda_{1}>(4+\delta)} e^{-n I\left(\lambda_{1}-4\right)+O(1)} d \lambda_{1} \\
& \approx \sum_{i} \frac{1}{n} e^{-n I\left(\delta+\frac{i}{n}\right)} \\
& \leq \frac{1}{n} e^{-n I(\delta)-I^{\prime}(\delta) i} \\
& \approx e^{-n I(\delta)-\log n+O(1)}
\end{aligned}
$$

- For large $L>(4+\delta)$, the probability of $\lambda_{1}>L$ is much smaller and can be ignored.
- Given the expression from the previous slide the final estimate is now obtained by

$$
\begin{aligned}
\int_{L>\lambda_{1} \geq(4+\delta)} f_{n, n}(\underline{\lambda}) d \underline{\lambda} & =\int_{L>\lambda_{1}>(4+\delta)} e^{-n I\left(\lambda_{1}-4\right)+O(1)} d \lambda_{1} \\
& \approx \sum_{i} \frac{1}{n} e^{-n I\left(\delta+\frac{i}{n}\right)} \\
& \leq \frac{1}{n} e^{-n I(\delta)-I^{\prime}(\delta) i} \\
& \approx e^{-n I(\delta)-\log n+O(1)}
\end{aligned}
$$

- The lower bound will follow by just considering the first term in the sum.

Key rigidity results used to make the previous discussion rigorous.

Concentration via Log-Sobolev inequality

X is an $N \times M(N \leq M)$ Complex Gaussian Matrices; $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{N}$ are the eigenvalues of $\frac{1}{N} X X^{*}$.

$$
\operatorname{tr}(f)=\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

Concentration via Log-Sobolev inequality

X is an $N \times M(N \leq M)$ Complex Gaussian Matrices; $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{N}$ are the eigenvalues of $\frac{1}{N} X X^{*}$.

$$
\operatorname{tr}(f)=\frac{1}{N} \sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

Theorem (Guionnet, Zeitouni)

For any Lipschitz f, there exists $C>0$ depending on the Lipschitz constant of f such that for all M, N and all $\delta>0$ we have

$$
\mathbb{P}\left(|\operatorname{tr}(f)-\mathbb{E}(\operatorname{tr}(f))| \geq \delta \frac{M+N}{N}\right) \leq e^{-C \delta^{2}(M+N)^{2}}
$$

Square case

Theorem (Goetze-Tikhomirov '14)

Let $M=N$ and let ESM denote the expected empirical spectral distribution of $\frac{1}{M} X X^{*}$. There exists an absolute constant C such that $d_{\mathrm{KS}}(\mathrm{ESM}, \mathrm{MP}) \leq C N^{-1}$ for all N where $d_{\mathrm{KS}}(\cdot, \cdot)$ denote the Kolmogorov-Smirnov distance between two distributions.

Square case

Theorem (Goetze-Tikhomirov '14)

Let $M=N$ and let ESM denote the expected empirical spectral distribution of $\frac{1}{M} X X^{*}$. There exists an absolute constant C such that $d_{\mathrm{KS}}(\mathrm{ESM}, \mathrm{MP}) \leq C N^{-1}$ for all N where $d_{\mathrm{KS}}(\cdot, \cdot)$ denote the Kolmogorov-Smirnov distance between two distributions.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $\left\|f^{\prime}\right\|_{1}<\infty$. Integration by parts implies that

$$
\left|\int f d \mathrm{ESM}-\int f d \mathrm{MP}\right|=O\left(\frac{\left\|f^{\prime}\right\|_{1}}{n}\right)
$$

Square case

Theorem (Goetze-Tikhomirov '14)

Let $M=N$ and let ESM denote the expected empirical spectral distribution of $\frac{1}{M} X X^{*}$. There exists an absolute constant C such that $d_{\mathrm{KS}}(\mathrm{ESM}, \mathrm{MP}) \leq C N^{-1}$ for all N where $d_{\mathrm{KS}}(\cdot, \cdot)$ denote the Kolmogorov-Smirnov distance between two distributions.

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is C^{1} and $\left\|f^{\prime}\right\|_{1}<\infty$. Integration by parts implies that

$$
\left|\int f d \mathrm{ESM}-\int f d \mathrm{MP}\right|=O\left(\frac{\left\|f^{\prime}\right\|_{1}}{n}\right)
$$

- There are similar results by Bai-Silverstein, Guionnet, Johansson.

Transversal fluctuation lower bound

Transversal fluctuation lower bound

Transversal fluctuation lower bound

Lemma

Fix $\delta>0$. There exists a constant $C=C(\delta)>0$ such that we have for all n sufficiently large

$$
\left.\mathbb{P}\left(T_{\mathbf{0}, v_{*}}+T_{v_{*}, \mathbf{n}}^{\prime}\right) \geq(4+\delta) n \mid \mathcal{U}_{\delta}(n)\right) \leq \frac{C}{\sqrt{n}}
$$

where $v_{*}=\left(\frac{n}{2}, \frac{n}{2}\right)$

Transversal fluctuation lower bound

Lemma

Fix $\delta>0$. There exists a constant $C=C(\delta)>0$ such that we have for all n sufficiently large

$$
\left.\mathbb{P}\left(T_{\mathbf{0}, v_{*}}+T_{v_{*}, \mathbf{n}}^{\prime}\right) \geq(4+\delta) n \mid \mathcal{U}_{\delta}(n)\right) \leq \frac{C}{\sqrt{n}}
$$

where $v_{*}=\left(\frac{n}{2}, \frac{n}{2}\right)$

- The LHS is bounded by sum over terms like

$$
\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)
$$

with $\delta_{1}+\delta_{2} \geq \delta$ and the precise LDP result for each of them along with convexity of $I(\delta)$.

- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.
- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.

$$
\frac{\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)}{\mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq\left(4+\delta_{1}\right) n\right)}
$$

- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.

$$
\frac{\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)}{\mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq\left(4+\delta_{1}\right) n\right)}
$$

$$
\begin{aligned}
& \leq \frac{e^{-\frac{n}{2}\left[I\left(\delta_{1}\right)+I\left(\delta_{2}\right)\right]-2 \log n+O(1)}}{e^{-n I(\delta)-\log n+O(1)}} \\
& \approx \frac{1}{n} e^{-I^{\prime \prime}(\delta) \frac{i^{2}}{n}}
\end{aligned}
$$

- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.

$$
\frac{\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)}{\mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq\left(4+\delta_{1}\right) n\right)}
$$

$$
\begin{aligned}
& \leq \frac{e^{-\frac{n}{2}\left[I\left(\delta_{1}\right)+I\left(\delta_{2}\right)\right]-2 \log n+O(1)}}{e^{-n I(\delta)-\log n+O(1)}} \\
& \approx \frac{1}{n} e^{-I^{\prime \prime}(\delta) \frac{i^{2}}{n}}
\end{aligned}
$$

- So summing over i provides an $O\left(\frac{1}{\sqrt{n}}\right)$ bound.
- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.

$$
\frac{\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)}{\mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq\left(4+\delta_{1}\right) n\right)}
$$

$$
\begin{aligned}
& \leq \frac{e^{-\frac{n}{2}\left[I\left(\delta_{1}\right)+I\left(\delta_{2}\right)\right]-2 \log n+O(1)}}{e^{-n I(\delta)-\log n+O(1)}} \\
& \approx \frac{1}{n} e^{-I^{\prime \prime}(\delta) \frac{i^{2}}{n}}
\end{aligned}
$$

- So summing over i provides an $O\left(\frac{1}{\sqrt{n}}\right)$ bound.
- Same bound works for other points along the main anti-diagonal by monotonicity.
- Take $\delta_{1}=\delta+\frac{i}{n}, \delta_{2}=\delta-\frac{i}{n}$.

$$
\frac{\mathbb{P}\left(T_{\mathbf{0}, v_{*}} \geq\left(4+\delta_{1}\right) n / 2\right) \mathbb{P}\left(T_{v_{*}, \mathbf{n}} \geq\left(4+\delta_{2}\right) n / 2\right)}{\mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq\left(4+\delta_{1}\right) n\right)}
$$

$$
\begin{aligned}
& \leq \frac{e^{-\frac{n}{2}\left[I\left(\delta_{1}\right)+I\left(\delta_{2}\right)\right]-2 \log n+O(1)}}{e^{-n I(\delta)-\log n+O(1)}} \\
& \approx \frac{1}{n} e^{-I^{\prime \prime}(\delta) \frac{i^{2}}{n}}
\end{aligned}
$$

- So summing over i provides an $O\left(\frac{1}{\sqrt{n}}\right)$ bound.
- Same bound works for other points along the main anti-diagonal by monotonicity.
- This shows delocalization at scale \sqrt{n}.

Stochastic inequalities for determinantal process

Let Y be an $(M+1) \times(N-1)$ matrix with standard complex Gaussian entries, and let $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{N-1}$ denote the eigenvalues of $Y^{*} Y$.

Stochastic inequalities for determinantal process

Let Y be an $(M+1) \times(N-1)$ matrix with standard complex Gaussian entries, and let $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{N-1}$ denote the eigenvalues of $Y^{*} Y$.

Theorem

There exists a coupling such that almost surely

$$
\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \cdots, \tilde{\lambda}_{N-1}\right) \subset\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right)
$$

In particular we have $\lambda_{1} \succeq \tilde{\lambda}_{1}$, where \succeq denotes stochastic domination.

Stochastic inequalities for determinantal process

Let Y be an $(M+1) \times(N-1)$ matrix with standard complex Gaussian entries, and let $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{N-1}$ denote the eigenvalues of $Y^{*} Y$.

Theorem

There exists a coupling such that almost surely

$$
\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \cdots, \tilde{\lambda}_{N-1}\right) \subset\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right)
$$

In particular we have $\lambda_{1} \succeq \tilde{\lambda}_{1}$, where \succeq denotes stochastic domination.

- The proof invokes an abstract result of Lyons about stochastic comparisons of determinantal point processes whose kernels are ordered.

Stochastic inequalities for determinantal process

Let Y be an $(M+1) \times(N-1)$ matrix with standard complex Gaussian entries, and let $\tilde{\lambda}_{1} \geq \tilde{\lambda}_{2} \geq \cdots \geq \tilde{\lambda}_{N-1}$ denote the eigenvalues of $Y^{*} Y$.

Theorem

There exists a coupling such that almost surely

$$
\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \cdots, \tilde{\lambda}_{N-1}\right) \subset\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right)
$$

In particular we have $\lambda_{1} \succeq \tilde{\lambda}_{1}$, where \succeq denotes stochastic domination.

- The proof invokes an abstract result of Lyons about stochastic comparisons of determinantal point processes whose kernels are ordered.
- We thank Manjunath Krishnapur for showing us how to prove this result.

Upper bound

- To prove the upper bound one needs to understand precise LDP for passage times $T_{(1,1),\left(\frac{N}{2}-C, \frac{N}{2}+C\right)}$.

Upper bound

- To prove the upper bound one needs to understand precise LDP for passage times $T_{(1,1),\left(\frac{N}{2}-C, \frac{N}{2}+C\right)}$.
- Thus we have to analyze λ_{1} for non-square Wishart matrices ($M \times N$ where $M=N+o(N)$) and using Coulomb gas methods would need to rely on rigidity results in this context.

Upper bound

- To prove the upper bound one needs to understand precise LDP for passage times $T_{(1,1),\left(\frac{N}{2}-C, \frac{N}{2}+C\right)}$.
- Thus we have to analyze λ_{1} for non-square Wishart matrices ($M \times N$ where $M=N+o(N)$) and using Coulomb gas methods would need to rely on rigidity results in this context.
- Luckily they are available.

For $j=1,2, \ldots, N$ let $\gamma_{j}=\gamma_{j, M, N}$ denote the classical location of the eigenvalues of $\frac{1}{M} X X^{*}$, i.e., $\gamma_{j, M, N}$ are the solutions of the equations

$$
\int_{(1-\sqrt{y})^{2}}^{\gamma_{j, M, N}} d \mathrm{MP}_{y}(x)=1-\frac{j}{N}
$$

where $y=\frac{M}{N}$. The following theorem gives comparison between the classical locations γ_{j} and λ_{j}.

For $j=1,2, \ldots, N$ let $\gamma_{j}=\gamma_{j, M, N}$ denote the classical location of the eigenvalues of $\frac{1}{M} X X^{*}$, i.e., $\gamma_{j, M, N}$ are the solutions of the equations

$$
\int_{(1-\sqrt{y})^{2}}^{\gamma_{j, M, N}} d \mathrm{MP}_{y}(x)=1-\frac{j}{N}
$$

where $y=\frac{M}{N}$. The following theorem gives comparison between the classical locations γ_{j} and λ_{j}.

Theorem (B-Y-Y (2013))

For $c>0$, let \mathcal{E}_{c} denote the event that

$$
\begin{aligned}
& \left\{\exists j \in\left[(\log N)^{c \log \log N}, N-(\log N)^{c \log \log N}\right]\right. \text { such that } \\
& \left.\qquad\left|\lambda_{j}-\gamma_{j}\right| \geq \frac{c(\log N)^{c \log \log N}}{\min (j, N+1-j)^{\frac{1}{3}} N^{\frac{2}{3}}}\right\} .
\end{aligned}
$$

There exists $c>0$ such that for all sufficiently large N

$$
\mathbb{P}\left(\mathcal{E}_{c}\right) \leq e^{-(\log N)^{c \log \log N}}
$$

Asymmetric case

Fix $\varepsilon>0$.

Asymmetric case

Fix $\varepsilon>0$.
Theorem
Let $M=N+o(N), y=\frac{N}{M} \in(0,1)$ then for all $\delta>0$,

$$
\log \mathbb{P}\left(\lambda_{1}>(4+\delta)\right)=-N I_{y}(\delta)+O\left(N^{\varepsilon}\right)
$$

Asymmetric case

Fix $\varepsilon>0$.

Theorem

Let $M=N+o(N), y=\frac{N}{M} \in(0,1)$ then for all $\delta>0$,

$$
\log \mathbb{P}\left(\lambda_{1}>(4+\delta)\right)=-N I_{y}(\delta)+O\left(N^{\varepsilon}\right)
$$

where for $y \in(0,1]$ and $\delta>0$,

$$
J_{y}(\delta):=\int \log (4+\delta-x) d \mathrm{MP}_{y}
$$

$$
I_{y}(\delta):=-\left(2+y^{-1}\right)+\log y+1+(4+\delta) y^{-1}-\left(y^{-1}-1\right)(\log (4+\delta))-2 J_{y}(\delta)
$$

Asymmetric case

Fix $\varepsilon>0$.

Theorem

Let $M=N+o(N), y=\frac{N}{M} \in(0,1)$ then for all $\delta>0$,

$$
\log \mathbb{P}\left(\lambda_{1}>(4+\delta)\right)=-N I_{y}(\delta)+O\left(N^{\varepsilon}\right)
$$

where for $y \in(0,1]$ and $\delta>0$,

$$
J_{y}(\delta):=\int \log (4+\delta-x) d \mathrm{MP}_{y}
$$

$I_{y}(\delta):=-\left(2+y^{-1}\right)+\log y+1+(4+\delta) y^{-1}-\left(y^{-1}-1\right)(\log (4+\delta))-2 J_{y}(\delta)$,

- $y=1, I_{y}(\delta)=I(\delta)$.

Asymmetric case

Fix $\varepsilon>0$.

Theorem

Let $M=N+o(N), y=\frac{N}{M} \in(0,1)$ then for all $\delta>0$,

$$
\log \mathbb{P}\left(\lambda_{1}>(4+\delta)\right)=-N I_{y}(\delta)+O\left(N^{\varepsilon}\right)
$$

where for $y \in(0,1]$ and $\delta>0$,

$$
J_{y}(\delta):=\int \log (4+\delta-x) d \mathrm{MP}_{y}
$$

$$
I_{y}(\delta):=-\left(2+y^{-1}\right)+\log y+1+(4+\delta) y^{-1}-\left(y^{-1}-1\right)(\log (4+\delta))-2 J_{y}(\delta)
$$

- $y=1, I_{y}(\delta)=I(\delta)$.
- One can replace the $O\left(N^{\varepsilon}\right)$ term by $-\log (N)+O(1)$ term with Bai-Silversteins' result.

Key comparison of rate functions

- $m_{1}=n+c, n_{1}=n-c$.
- $(4+\hat{\delta}) m_{1}=(4+\delta) n$.

Lemma

$$
\mathbb{P}_{m_{1}, n_{1}}\left(\lambda_{1} \geq(4+\hat{\delta})\right)=\mathbb{P}_{n, n}\left(\lambda_{1} \geq(4+\delta)\right) e^{-\beta_{\delta}\left(\frac{c^{2}}{n}\right)+O\left(\frac{c^{3}}{n^{2}}+n^{\varepsilon}\right)},
$$

Key comparison of rate functions

- $m_{1}=n+c, n_{1}=n-c$.
- $(4+\hat{\delta}) m_{1}=(4+\delta) n$.

Lemma

$$
\mathbb{P}_{m_{1}, n_{1}}\left(\lambda_{1} \geq(4+\hat{\delta})\right)=\mathbb{P}_{n, n}\left(\lambda_{1} \geq(4+\delta)\right) e^{-\beta_{\delta}\left(\frac{c^{2}}{n}\right)+O\left(\frac{c^{3}}{n^{2}}+n^{\varepsilon}\right)},
$$

$$
\begin{aligned}
\beta_{\delta} & =-10-\int \log (4+\delta-x) \mathrm{dMP} \\
& +(6+\delta) \int \frac{1}{4+\delta-x} d \mathrm{MP}+2 \int_{0}^{4} \frac{\log (4+\delta-x)}{2 \pi \sqrt{x(4-x)}} d x .
\end{aligned}
$$

Proof of Transversal Fluctuation Upper Bound

Proof of Transversal Fluctuation Upper Bound

- For $v \in[0, n]^{2}$, let $\Gamma_{n}(v)$ denote the maximal weight path from $\mathbf{0}$ to \mathbf{n} passing through v.

Proof of Transversal Fluctuation Upper Bound

- For $v \in[0, n]^{2}$, let $\Gamma_{n}(v)$ denote the maximal weight path from $\mathbf{0}$ to \mathbf{n} passing through v.
- Let \mathcal{R}_{n} denote the set of all vertices $v=\left(v_{1}, v_{2}\right) \in[0, n]^{2}$ such that $\left|v_{1}-v_{2}\right| \geq n^{1 / 2+\varepsilon}$.

Proof of Transversal Fluctuation Upper Bound

- For $v \in[0, n]^{2}$, let $\Gamma_{n}(v)$ denote the maximal weight path from $\mathbf{0}$ to \mathbf{n} passing through v.
- Let \mathcal{R}_{n} denote the set of all vertices $v=\left(v_{1}, v_{2}\right) \in[0, n]^{2}$ such that $\left|v_{1}-v_{2}\right| \geq n^{1 / 2+\varepsilon}$.

Proof of Transversal Fluctuation Upper Bound

- For $v \in[0, n]^{2}$, let $\Gamma_{n}(v)$ denote the maximal weight path from $\mathbf{0}$ to \mathbf{n} passing through v.
- Let \mathcal{R}_{n} denote the set of all vertices $v=\left(v_{1}, v_{2}\right) \in[0, n]^{2}$ such that $\left|v_{1}-v_{2}\right| \geq n^{1 / 2+\varepsilon}$.

Clearly it suffices to show that

$$
\sum_{v \in \mathcal{R}_{n}} \frac{\mathbb{P}\left(\ell\left(\Gamma_{n}(v)\right) \geq(4+\delta) n\right)}{\mathbb{P}\left(T_{n} \geq(4+\delta) n\right)}=o(1)
$$

Localization at Midpoint

Localization at Midpoint

We will show for $v_{0} \in \mathcal{R}_{n}$:
$\log \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \leq-n I(\delta)-n^{\varepsilon}$.

Localization at Midpoint

We will show for $v_{0} \in \mathcal{R}_{n}$:
$\log \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \leq-n I(\delta)-n^{\varepsilon}$.

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right) .
\end{aligned}
$$

Remaining Steps

Remaining Steps

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right) .
\end{aligned}
$$

Remaining Steps

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right) .
\end{aligned}
$$

- To bound the RHS we use our comparison of rate function to bound it by $e^{-\frac{c^{2}}{n}}$ times

Remaining Steps

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right) .
\end{aligned}
$$

- To bound the RHS we use our comparison of rate function to bound it by $e^{-\frac{c^{2}}{n}}$ times

$$
\sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, \frac{\mathbf{n}}{2}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{\frac{\mathbf{n}}{\mathbf{2}}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right)
$$

Remaining Steps

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right)
\end{aligned}
$$

- To bound the RHS we use our comparison of rate function to bound it by $e^{-\frac{c^{2}}{n}}$ times

$$
\sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, \frac{\mathbf{n}}{2}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{\frac{\mathbf{n}}{2}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right)
$$

- We use our refined LDP result for the square case along with convexity of $I(\cdot)$ to bound this.

Remaining Steps

$$
\begin{aligned}
& \mathbb{P}\left(T_{\mathbf{0}, v_{0}}+T_{v_{0}, \mathbf{n}}^{\prime} \geq(4+\delta) n\right) \\
& \leq \sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, v_{0}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{v_{0}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right) .
\end{aligned}
$$

- To bound the RHS we use our comparison of rate function to bound it by $e^{-\frac{c^{2}}{n}}$ times

$$
\sum_{\delta_{1}+\delta_{2} \geq 2 \delta} \mathbb{P}\left(T_{\mathbf{0}, \frac{\mathbf{n}}{2}} \geq\left(4+\delta_{1}\right) \frac{n}{2}\right) \mathbb{P}\left(T_{\frac{\mathbf{n}}{2}, \mathbf{n}}^{\prime} \geq\left(4+\delta_{2}\right) \frac{n}{2}\right)
$$

- We use our refined LDP result for the square case along with convexity of $I(\cdot)$ to bound this.
- We see that the whole thing is at most

$$
e^{-\frac{c^{2}}{n}} \operatorname{Poly}(n) \mathbb{P}\left(T_{\mathbf{0}, \mathbf{n}} \geq(4+\delta) n\right)
$$

Transversal fluctuation for lower tail

- Let $\gamma:[0,1] \rightarrow[0,1]$ be a continuous increasing surjection.
- For $\varepsilon^{\prime}>0$, let

$$
\gamma_{n}^{\varepsilon^{\prime}}=\left\{(x, y) \in[0, n]^{2} \cap \mathbb{Z}^{2}:\left|y-n \gamma\left(n^{-1} x\right)\right| \leq \varepsilon^{\prime} n\right\}
$$

Transversal fluctuation for lower tail

- Let $\gamma:[0,1] \rightarrow[0,1]$ be a continuous increasing surjection.
- For $\varepsilon^{\prime}>0$, let

$$
\gamma_{n}^{\varepsilon^{\prime}}=\left\{(x, y) \in[0, n]^{2} \cap \mathbb{Z}^{2}:\left|y-n \gamma\left(n^{-1} x\right)\right| \leq \varepsilon^{\prime} n\right\}
$$

Theorem (Basu, G., Sly (2017))

Fix $\delta \in(0,4)$. Given any γ as above, and $\varepsilon>0$ there exists $\varepsilon^{\prime}>0$ such that for all large enough n,

$$
\mathbb{P}\left(\Gamma_{n} \subseteq \gamma_{n}^{\varepsilon^{\prime}} \mid T_{n} \leq(4-\delta) n\right) \leq \varepsilon
$$

Lower tail event: further observations

Lower tail event: further observations

(1) By the FKG inequality there is a coupling between the unconditional field of weights and the conditional field of weights such that the unconditional field is point-wise larger.

Lower tail event: further observations

(1) By the FKG inequality there is a coupling between the unconditional field of weights and the conditional field of weights such that the unconditional field is point-wise larger.
(2) Previous argument shows that there are $\Theta\left(n^{2}\right)$ many last passage times which decrease in the coupled conditional field.

Lower tail event: further observations

(1) By the FKG inequality there is a coupling between the unconditional field of weights and the conditional field of weights such that the unconditional field is point-wise larger.
(2) Previous argument shows that there are $\Theta\left(n^{2}\right)$ many last passage times which decrease in the coupled conditional field.
(3) In turn this suggests that the polymer on the conditional environment should not be contained in a set of size $o\left(n^{2}\right)$ with high probability.

Lower tail event: further observations

(1) By the FKG inequality there is a coupling between the unconditional field of weights and the conditional field of weights such that the unconditional field is point-wise larger.
(2) Previous argument shows that there are $\Theta\left(n^{2}\right)$ many last passage times which decrease in the coupled conditional field.
(3) In turn this suggests that the polymer on the conditional environment should not be contained in a set of size $o\left(n^{2}\right)$ with high probability.
(9) Formalizing this heuristic requires two ingredients.

Fluctuation of T_{n} on the large deviation event

Fluctuation of T_{n} on the large deviation event

(1) Conditional on $T_{n} \leq(4-\delta) n$, the value of T_{n} should be very close to $(4-\delta) n$.

Fluctuation of T_{n} on the large deviation event

(1) Conditional on $T_{n} \leq(4-\delta) n$, the value of T_{n} should be very close to $(4-\delta) n$.
(2) In fact, the n^{2} speed of the large deviation suggests that $T_{n} \approx(4-\delta) n-\Theta\left(\frac{1}{n}\right)$.

Fluctuation of T_{n} on the large deviation event

(1) Conditional on $T_{n} \leq(4-\delta) n$, the value of T_{n} should be very close to $(4-\delta) n$.
(2) In fact, the n^{2} speed of the large deviation suggests that $T_{n} \approx(4-\delta) n-\Theta\left(\frac{1}{n}\right)$.
(3) One quick way to see this is to Taylor expand the rate function (We will prove things in general settings where existence of rate function was not known).

Fluctuation of T_{n} on the large deviation event

(1) Conditional on $T_{n} \leq(4-\delta) n$, the value of T_{n} should be very close to $(4-\delta) n$.
(2) In fact, the n^{2} speed of the large deviation suggests that $T_{n} \approx(4-\delta) n-\Theta\left(\frac{1}{n}\right)$.
(3) One quick way to see this is to Taylor expand the rate function (We will prove things in general settings where existence of rate function was not known).
(1) We can formalize this into the following statement:

Fluctuation of T_{n} on the large deviation event
(1) Conditional on $T_{n} \leq(4-\delta) n$, the value of T_{n} should be very close to $(4-\delta) n$.
(2) In fact, the n^{2} speed of the large deviation suggests that $T_{n} \approx(4-\delta) n-\Theta\left(\frac{1}{n}\right)$.
(3) One quick way to see this is to Taylor expand the rate function (We will prove things in general settings where existence of rate function was not known).
(9) We can formalize this into the following statement:

Proposition

Fix $\delta \in(0,4)$. Given any $\varepsilon>0$ there exists $H>0$ such that

$$
\mathbb{P}\left(\left.T_{n} \geq(4-\delta) n-\frac{H}{n} \right\rvert\, T_{n} \leq(4-\delta) n\right) \geq 1-\varepsilon
$$

Rough argument

- Condition on the environment except for an anti-diagonal.

Rough argument

- Condition on the environment except for an anti-diagonal.
- Unconditionally, the entries are independent Exponentials.

Rough argument

- Condition on the environment except for an anti-diagonal.
- Unconditionally, the entries are independent Exponentials.
- Conditionally, they are still independent.

Rough argument

- Condition on the environment except for an anti-diagonal.
- Unconditionally, the entries are independent Exponentials.
- Conditionally, they are still independent.
- X_{v} has conditional law to be an Exponential conditioned to be less than some barrier M_{v} which is measurable with respect to the conditioning.

Rough argument

- Condition on the environment except for an anti-diagonal.
- Unconditionally, the entries are independent Exponentials.
- Conditionally, they are still independent.
- X_{v} has conditional law to be an Exponential conditioned to be less than some barrier M_{v}
 which is measurable with respect to the conditioning.

Rough argument

- Condition on the environment except for an anti-diagonal.
- Unconditionally, the entries are independent Exponentials.
- Conditionally, they are still independent.
- X_{v} has conditional law to be an Exponential conditioned to be less than some barrier M_{v}
 which is measurable with respect to the conditioning.
M_{v} is precisely the value that would make the longest path passing through v have weight $(4-\delta) n$.

One of them wins

- M_{v} is not too large (less than $M)$ for a significant fraction of the vertices.

One of them wins

- M_{v} is not too large (less than $M)$ for a significant fraction of the vertices.
- Otherwise there would not be a macroscopic drop in the sum of variables in the conditioned field.

One of them wins

- M_{v} is not too large (less than $M)$ for a significant fraction of the vertices.
- Otherwise there would not be a macroscopic drop in the sum of variables in the conditioned field.
- Thus the polymer passes through the v for which $M_{v}-X_{v}$ is the smallest.

One of them wins

- M_{v} is not too large (less than $M)$ for a significant fraction of the vertices.
- Otherwise there would not be a macroscopic drop in the sum of variables in the conditioned field.
- Thus the polymer passes through the v for which $M_{v}-X_{v}$ is the smallest.
- The weight of the polymer would be $(4+\delta) n-\left(M_{v}-X_{v}\right)$.

One of them wins

- M_{v} is not too large (less than M) for a significant fraction of the vertices.
- Otherwise there would not be a macroscopic drop in the sum of variables in the conditioned field.
- Thus the polymer passes through the v for which $M_{v}-X_{v}$ is the smallest.

- The weight of the polymer would be $(4+\delta) n-\left(M_{v}-X_{v}\right)$.

One of them wins

- M_{v} is not too large (less than M) for a significant fraction of the vertices.
- Otherwise there would not be a macroscopic drop in the sum of variables in the conditioned field.
- Thus the polymer passes through the v for which $M_{v}-X_{v}$ is the smallest.

- The weight of the polymer would be $(4+\delta) n-\left(M_{v}-X_{v}\right)$.

Now the theorem follows from an observation similar to the one which says maximum of n independent $U[0,1]$ variables is typically like $1-O\left(\frac{1}{n}\right)$.

Anti-concentration of the best path in a thin strip

(1) Let $A \subset[0, n]^{2} \cap \mathbb{Z}^{2}$ be a connected set containing $(0,0)$ and (n, n) both.

Anti-concentration of the best path in a thin strip

(1) Let $A \subset[0, n]^{2} \cap \mathbb{Z}^{2}$ be a connected set containing $(0,0)$ and (n, n) both.
(2) Let $T_{n}(A)$ denote the length of the longest directed path from $(0,0)$ to (n, n) that lies entirely in A.

Anti-concentration of the best path in a thin strip

(1) Let $A \subset[0, n]^{2} \cap \mathbb{Z}^{2}$ be a connected set containing $(0,0)$ and (n, n) both.
(2) Let $T_{n}(A)$ denote the length of the longest directed path from $(0,0)$ to (n, n) that lies entirely in A.

Proposition

Fix $\delta \in(0,4)$. Given any H and $\varepsilon>0$ there exists $\varepsilon^{\prime}>0$ such that for every deterministic set $A \subseteq[0, n]^{2} \cap \mathbb{Z}^{2}$, with $|A| \leq \varepsilon^{\prime} n^{2}$ we have

$$
\mathbb{P}\left(\left.T_{n}(A) \geq(4-\delta) n-\frac{H}{n} \right\rvert\, T_{n} \leq(4-\delta) n\right) \leq \varepsilon .
$$

Result for Poissonian LPP

- In the case of Poissonian LPP, T_{n} is discrete.

Result for Poissonian LPP

- In the case of Poissonian LPP, T_{n} is discrete.
- The polymer is typically non-unique.

Result for Poissonian LPP

- In the case of Poissonian LPP, T_{n} is discrete.
- The polymer is typically non-unique.
- This results in subtle change of the delocalization statement that we prove.

Result for Poissonian LPP

- In the case of Poissonian LPP, T_{n} is discrete.
- The polymer is typically non-unique.
- This results in subtle change of the delocalization statement that we prove.

Theorem (Basu, G., Sly (2017))

Fixing $\delta \in(0,2)$, for any increasing continuous $\gamma:[0,1] \rightarrow[0,1]$ with $\gamma(0)=0$ and $\gamma(1)=1$, there exists $\varepsilon>0$, such that

$$
\mathbb{P}\left(\mathcal{E}_{\gamma, n} \mid T_{n} \leq(2-\delta) n\right) \rightarrow 1
$$

as $n \rightarrow \infty$, where $\mathcal{E}_{\gamma, n}$ denotes the event that there exists a polymer Γ_{n} between $(0,0)$ and (n, n) that is not contained in γ_{n}^{ε}.

Beyond integrable settings

- Proofs do not use any inputs from integrable probability.
- Properties of Exponential distribution makes the calculation easier and more transparent.
- Can be generalized to a large class of LPP models.

Beyond integrable settings

- Proofs do not use any inputs from integrable probability.
- Properties of Exponential distribution makes the calculation easier and more transparent.
- Can be generalized to a large class of LPP models.

Theorem (Basu, G., Sly (2017))

Let F be a probability measure on $[0, \infty)$ that has continuous and non-increasing density and enough moments (or log-concave density). For $\delta \in\left(0, \mu_{F}\right)$ and $\varepsilon>0$, there exists $\varepsilon^{\prime}>0$ such that for all $\gamma:[0,1] \rightarrow[0,1]$ surjective and increasing one has

$$
\mathbb{P}\left(\Gamma_{n} \subseteq \gamma_{n}^{\varepsilon^{\prime}} \mid T_{n} \leq\left(\mu_{F}-\delta\right) n\right) \leq \varepsilon .
$$

- The key thing analyzed is the conditional distribution of the sum of a bunch of i.i.d. random variables conditioned on their projection on the unit L_{1} ball.

Final remarks

- There has been a lot of recent activity trying to understand LDP behavior for the KPZ equation, Corner growth height process etc. relying on integrable inputs.

Final remarks

- There has been a lot of recent activity trying to understand LDP behavior for the KPZ equation, Corner growth height process etc. relying on integrable inputs.
- In a recent work with Basu and Sly, we prove existence of the rate function for various non-integrable models like First Passage Percolation.

Final remarks

- There has been a lot of recent activity trying to understand LDP behavior for the KPZ equation, Corner growth height process etc. relying on integrable inputs.
- In a recent work with Basu and Sly, we prove existence of the rate function for various non-integrable models like First Passage Percolation.
- One open question: Does the polymer conditioned on the upper tail event converge to a Brownian bridge? A first step would be to show that the transversal fluctuation at the midpoint is given by a Gaussian.

Final remarks

- There has been a lot of recent activity trying to understand LDP behavior for the KPZ equation, Corner growth height process etc. relying on integrable inputs.
- In a recent work with Basu and Sly, we prove existence of the rate function for various non-integrable models like First Passage Percolation.
- One open question: Does the polymer conditioned on the upper tail event converge to a Brownian bridge? A first step would be to show that the transversal fluctuation at the midpoint is given by a Gaussian.

Thank You

