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Directed Last Passage Percolation (LPP) on Z2

• Put i.i.d. positive weights on
each vertex of Z2.

• π: directed path from (0, 0) to
(n, n).

• The last passage time from
(0, 0) to (n, n).

Tn = max
π

∑
(i,j)∈π

Xi,j .

X11 X12 X13 X14 · · · · · ·

X21

X31

X41

X22

...

...

X23 · · ·

· · ·

Xij

Xij ∼ i.i.d. F positive random
weights

Weight maximizing path Γn will be called the polymer.

Major objects of study

• Asymptotics of Tn.

• Asymptotics of the path Γn.
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Connections to particle systems and growth process

Totally asymmetric exclusion process on Z (TASEP): particles at
rate 1 jump to the right provided the site is empty.

Exponential LPP is equivalent to this model, where the passage times
between (0, 0) and (N,N) denote the time taken by the N th particle to
reach 0 starting from wedge initial conditions.

Equivalent to corner growth process.

Hammersley process: A particle system on R where particles at
rate one jump to their right to a uniform location between the
next particle.
(Connected to the problem of Poissonian Last Passage percolation:
Longest path passing through a Poisson field of points).

Equivalent to Poly-nuclear growth model (PNG).
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Maximal increasing subsequence/ Poissonian LPP
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Maximal increasing subsequence/ Poissonian LPP

• Longest increasing subsequence of a random permutation.
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Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman’s subadditive
Ergodic theorem, that almost surely and in L1,

• limn→∞
Tn
n = µF ;

• limn→∞
Tnx,ny
n = gF (x, y).

• Boundary of the limit shape {(x, y) : g(x, y) = 1} is convex.

Under mild conditions, Poincáre inequality ensures that
Var Tn = O(n).

Γn w.h.p. has deviation o(n) from the straight line joining (0, 0) to
(n, n) under strict convexity of the limit shape boundary at (1, 1).
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Var Tn = O(n).

Γn w.h.p. has deviation o(n) from the straight line joining (0, 0) to
(n, n) under strict convexity of the limit shape boundary at (1, 1).

Shirshendu Ganguly (Berkeley) LDP 6 / 53



Elementary Results- limit shape

Suitable moment conditions on F implies, using Kingman’s subadditive
Ergodic theorem, that almost surely and in L1,

• limn→∞
Tn
n = µF ;

• limn→∞
Tnx,ny
n = gF (x, y).

• Boundary of the limit shape {(x, y) : g(x, y) = 1} is convex.

Under mild conditions, Poincáre inequality ensures that
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KPZ universality predictions

Kardar, Parisi and Zhang (1986) predicted that under mild conditions
on F , LPP models (and many other related models) should exhibit
certain universal behavior governed by the KPZ equation.

• Longitudinal fluctuation exponent of 1/3;

• Transversal fluctuation exponent of 2/3; (locally Brownian vs
globally parabolic).

• Tracy-Widom type scaling limits;

• and much more...
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Transversal fluctuation

Dn(t) := |x(t)− y(t)|

(x(t), y(t))

Dn(t)

• For the anti-diagonal line {x+ y = t}, let the polymer intersect it at
(x(t), y(t)).
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Globally Parabolic vs Locally Brownian

• The polymer passes through the points where the parabolic loss
matches with Brownian fluctuation: x2

n ≈
√
x.
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Integrable Models

KPZ prediction has been rigorously verified only for a handful of
integrable models of LPP:

KPZ revolution (1999-)

• Last passage percolation on Z2 with Exponential, and Geometric
weights.

• Last passage percolation in a Poissonian field on R2/ longest
increasing subsequence in a random permutation.

• O’Connell-Yor polymer/ Brownian LPP, Dyson Brownian motion.

• Some other positive temperature models like Log-Gamma
Polymer, Continuum Directed Random Polymer (solution to the
Stochastic Heat Equation).

Based on bijections, exact formulae and connections to algebraic
combinatorics, representation theory, determinantal processes, random
matrix theory.
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Integrable/Exactly Solvable Models

Poissonian LPP

• RSK correspondence to Young Tableaux.

• ETnx,ny
n = 2

√
xy.

• Tn−2n
n1/3 → FTW .

• Similar results known for Geometric LPP by using connections to
generalized permutations. Passing to the limit one obtains:

Exponential LPP

• ETnx,ny
n = (

√
x+
√
y)2.

• Tn−4n
24/3n1/3 → FTW .

• Transversal fluctuation exponent of 2/3 is also rigorously known
using moderate deviations.
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Large Deviations for polymer weights

Questions

• What is the probability that Tn macroscopically deviates from µn?

• On the rare large deviation event, what does the polymer look like?

Upper tail large deviation: Tn ≥ (µ+ δ)n

• Large deviation speed is n under minimal conditions.

Lower tail large deviation: Tn ≤ (µ− δ)n
• Large deviation speed is n2 under minimal conditions.
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Upper vs Lower tail

n speed for {Tn ≥ (µ+ δ)n}.

• Planting a long path gives the
lower bound.

• Standard concentration
estimates (Talagrand) or a
renormalization argument
(Kesten) can be used to prove
the upper bound.

• Sub-additivity implies
existence of rate function.
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n2 speed for {Tn ≤ (µ− δ)n}.

• Typically there exists many
disjoint paths of length at least
(µ− δ

2)n.

• The probability that the
weight of any one of those
paths is lower than typical is
e−Θ(n).

• The large deviation event
implies all the paths are short.

The above argument already appeared in Kesten’s work on First
passage percolation.
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Large deviation for exactly solvable models

For Poissonian LPP Deuschel-Zeitouni (1998), Seppäläinen (1998)

• For δ > 0, limn
log P(Tn≥(2+δ)n)

n = −Iu(δ) where Iu(·) is an
increasing convex function with I(0) = 0.

• For δ ∈ (0, 2), limn
log P(Tn≤(2−δ)n)

n2 = −I`(δ).
• Explicit formulae available using Young Tableaux combinatorics/

Hammersley process connections.

Via RSK, this is exactly the number of permutations with a given
length for the longest increasing subsequence.
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Upper tail LDP

Longest increasing subsequence of a permutation has the same law
as the top row of a Young Tableaux sampled from the Plancherel
measure.

Using this Kim proved the upper bound.

Logan and Shepp had solved a variational problem connected to
the number of Young diagrams with a given length for the top row.

Deuschel and Zeitouni (1999) proved the lower bound using such
variational results.
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Young diagrams and Plancherel measure

1

3

4

8

1

2

6 3 2 1

P(Tn = k) =
∑
τ(0)=k

n!

π(τ)2
.
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Large deviation for exactly solvable models

For Exponential LPP Johansson (2000)

• For δ > 0, limn
log P(Tn≥(4+δ)n)

n = −Iu(δ).

• For δ ∈ (0, 4), limn
log P(Tn≤(4−δ)n)

n2 = −I`(δ).
• Explicit formulae available using random matrix theory/

orthogonal polynomials.

Similar results are known for Geometric LPP.

Coupling with TASEP also has been exploited in analyzing the
upper tail. Seppäläinen (1998)
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Geometric Consequences of Large Deviations

• Deuschel and Zeitouni (1999) studied what the path looks like
conditioned on the large deviation event?

• For upper tail large deviation in Poissonian LPP, they showed that
the path remains close to the diagonal (macroscopically) w.h.p.
even on the large deviation event i.e., the fluctuation is at most
o(n). Follows from the convexity of rate function.

• What is the exponent?

• Nothing was known about the lower tail.

We will focus on Exponential LPP for the rest of the talk.
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Transversal fluctuation for upper tail

Dn(t) := |x(t)− y(t)|; Dn = sup
t
Dn(t).

(x(t), y(t))

Dn(t)

ξ̄ := inf{ξ′ ≤ 1 : lim sup
n→∞

P(Dn ≥ nξ
′ | Uδ) = 0},

ξ := sup{ξ′ ≥ 0 : lim inf
n→∞

P(Dn ≥ nξ
′ | Uδ) = 1}.

If they agree we call the exponent ξδ.

Shirshendu Ganguly (Berkeley) LDP 20 / 53



Transversal fluctuation for upper tail

Dn(t) := |x(t)− y(t)|; Dn = sup
t
Dn(t).

(x(t), y(t))

Dn(t)

ξ̄ := inf{ξ′ ≤ 1 : lim sup
n→∞

P(Dn ≥ nξ
′ | Uδ) = 0},

ξ := sup{ξ′ ≥ 0 : lim inf
n→∞

P(Dn ≥ nξ
′ | Uδ) = 1}.

If they agree we call the exponent ξδ.

Shirshendu Ganguly (Berkeley) LDP 20 / 53



Transversal fluctuation for upper tail

Dn(t) := |x(t)− y(t)|; Dn = sup
t
Dn(t).

(x(t), y(t))

Dn(t)

ξ̄ := inf{ξ′ ≤ 1 : lim sup
n→∞

P(Dn ≥ nξ
′ | Uδ) = 0},

ξ := sup{ξ′ ≥ 0 : lim inf
n→∞

P(Dn ≥ nξ
′ | Uδ) = 1}.

If they agree we call the exponent ξδ.
Shirshendu Ganguly (Berkeley) LDP 20 / 53



Transversal fluctuation for upper tail

Theorem (Basu, G. (2019+))

For each δ > 0, ξδ exists and is equal to 1
2 .

Theorem (Upper bound)

For a fixed δ > 0, for any ε > 0,

lim sup
n→∞

P(Dn ≥ n1/2+ε | Uδ)→ 0.

Theorem (Lower Bound)

Fix δ > 0.
lim sup
n→∞

P(Dn ≤ hn1/2 | Uδ)→ 0

as h→ 0.
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• We will discuss the proof idea for the upper tail using connections to
random matrices and eigenvalue rigidity.

• If time permits, towards the end, I will describe what happens for the
lower tail.
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Key integrable input

Let XM×N denote an M ×N matrix with standard complex
Gaussian entries, where M ≥ N .

Let W = WN×N := X∗X denote the complex Wishart matrix, and
let λ1 ≥ λ2 ≥ · · · ≥ λN denote the eigenvalues of W .

T(1,1),(M,N) denotes the last passage time from (1, 1) to (M,N).

Theorem (Johansson)

λ1
d
= T(1,1),(M,N).
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Recall again

For Exponential LPP Johansson (2000)

• For δ > 0, limn→∞
log P(Tn≥(4+δ)n)

n = −I(δ).

• Similar results have been proved by Majumdar and Vergassola
relying on Coulomb gas methods.
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Refined LDP results

Theorem

Let M = N and let δ > 0 be fixed. Then

logP(λ1 > 4 + δ) = −NI(δ)− logN +O(1)

as N →∞.

where I(δ) := −2 + (4 + δ)− 2
∫ 4

0 log(4 + δ − x)

√
x(4−x)

2πx dx.

I(0) = 0.

I ′(δ), I ′′(δ) converge to 1 and zero respectively as δ goes to infinity.
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Eigenvalue density

ΛN := {(λ1, λ2, . . . , λN ) ∈ RN : λ1 ≥ λ2 ≥ · · · ≥ λN}. The joint
eigenvalue density of the scaled Wishart matrix ( 1

MX
∗X) is given by:

f(λ) = fM,N (λ) =
1

ZM,N
V (λ)2

N∏
i=1

λM−Ni e−M
∑N
i=1 λi

• V (λ) is the Vandermonde term:∏
i<j

(λi − λj)

• Partition function ZM,N is given by

ZM,N =

∏N−1
j=0 j!(M −N + j)!

MNM
.

Shirshendu Ganguly (Berkeley) LDP 26 / 53



Eigenvalue density

ΛN := {(λ1, λ2, . . . , λN ) ∈ RN : λ1 ≥ λ2 ≥ · · · ≥ λN}. The joint
eigenvalue density of the scaled Wishart matrix ( 1

MX
∗X) is given by:

f(λ) = fM,N (λ) =
1

ZM,N
V (λ)2

N∏
i=1

λM−Ni e−M
∑N
i=1 λi

• V (λ) is the Vandermonde term:∏
i<j

(λi − λj)

• Partition function ZM,N is given by

ZM,N =

∏N−1
j=0 j!(M −N + j)!

MNM
.

Shirshendu Ganguly (Berkeley) LDP 26 / 53



Eigenvalue density

ΛN := {(λ1, λ2, . . . , λN ) ∈ RN : λ1 ≥ λ2 ≥ · · · ≥ λN}. The joint
eigenvalue density of the scaled Wishart matrix ( 1

MX
∗X) is given by:

f(λ) = fM,N (λ) =
1

ZM,N
V (λ)2

N∏
i=1

λM−Ni e−M
∑N
i=1 λi

• V (λ) is the Vandermonde term:∏
i<j

(λi − λj)

• Partition function ZM,N is given by

ZM,N =

∏N−1
j=0 j!(M −N + j)!

MNM
.

Shirshendu Ganguly (Berkeley) LDP 26 / 53



Eigenvalue density

ΛN := {(λ1, λ2, . . . , λN ) ∈ RN : λ1 ≥ λ2 ≥ · · · ≥ λN}. The joint
eigenvalue density of the scaled Wishart matrix ( 1

MX
∗X) is given by:

f(λ) = fM,N (λ) =
1

ZM,N
V (λ)2

N∏
i=1

λM−Ni e−M
∑N
i=1 λi

• V (λ) is the Vandermonde term:∏
i<j

(λi − λj)

• Partition function ZM,N is given by

ZM,N =

∏N−1
j=0 j!(M −N + j)!

MNM
.

Shirshendu Ganguly (Berkeley) LDP 26 / 53



Asymptotics of Partition function

log
ZM−1,N−1

ZM,N
= 2N +M −N log

N

M
+O(1).
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Coulomb gas methods

V (λ1;λ(1)) :=
∏
j 6=1(λ1 − λj).

P(λ1 ≥ (4 + δ)) =

∫
λ1≥(4+δ)

fn,n(λ)dλ

=
Zn−1,n−1

Zn,n

∫
λ1≥(4+δ)

e−nλ1
(∫

λ(1)
V (λ1;λ(1))2e−

∑n
i=2 λifn−1,n−1dλ

(1)

)
dλ1

where λ(1) = (λ2 ≥ λ3 ≥ . . . ,≥ λn) and the inside integral is restricted
to λ2 < λ1.
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Rearranging the term inside the exponential we get

exp

(
2

n∑
i=2

log(λ1 − λi)−
n∑
i=2

λi)

)
.

• The empirical spectral measure 1
N

∑N
i=1 δλi of the matrix 1

NXX
∗

converges (as N →∞) to the Marcenko-Pastur law MP.
• (Rigidity) The integral with respect to the empirical spectral
measure will be close to that with respect to MP.

= exp

(
(n− 1)(2

∫
log(λ1 − x)dMP(x)−

∫
xdMP(x) +O(1)

)
.

Along with the precise estimate for the partition function this yields
that (for a fixed L):∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1
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= exp

(
(n− 1)(2

∫
log(λ1 − x)dMP(x)−

∫
xdMP(x) +O(1)

)
.

Along with the precise estimate for the partition function this yields
that (for a fixed L):∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1

Shirshendu Ganguly (Berkeley) LDP 29 / 53



Rearranging the term inside the exponential we get

exp

(
2

n∑
i=2

log(λ1 − λi)−
n∑
i=2

λi)

)
.

• The empirical spectral measure 1
N

∑N
i=1 δλi of the matrix 1

NXX
∗

converges (as N →∞) to the Marcenko-Pastur law MP.
• (Rigidity) The integral with respect to the empirical spectral
measure will be close to that with respect to MP.

= exp

(
(n− 1)(2

∫
log(λ1 − x)dMP(x)−

∫
xdMP(x) +O(1)

)
.

Along with the precise estimate for the partition function this yields
that (for a fixed L):∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1

Shirshendu Ganguly (Berkeley) LDP 29 / 53



Rearranging the term inside the exponential we get

exp

(
2

n∑
i=2

log(λ1 − λi)−
n∑
i=2

λi)

)
.

• The empirical spectral measure 1
N

∑N
i=1 δλi of the matrix 1

NXX
∗

converges (as N →∞) to the Marcenko-Pastur law MP.
• (Rigidity) The integral with respect to the empirical spectral
measure will be close to that with respect to MP.

= exp

(
(n− 1)(2

∫
log(λ1 − x)dMP(x)−

∫
xdMP(x) +O(1)

)
.

Along with the precise estimate for the partition function this yields
that (for a fixed L):∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1

Shirshendu Ganguly (Berkeley) LDP 29 / 53



Rearranging the term inside the exponential we get

exp

(
2

n∑
i=2

log(λ1 − λi)−
n∑
i=2

λi)

)
.

• The empirical spectral measure 1
N

∑N
i=1 δλi of the matrix 1

NXX
∗

converges (as N →∞) to the Marcenko-Pastur law MP.
• (Rigidity) The integral with respect to the empirical spectral
measure will be close to that with respect to MP.

= exp

(
(n− 1)(2

∫
log(λ1 − x)dMP(x)−

∫
xdMP(x) +O(1)

)
.

Along with the precise estimate for the partition function this yields
that (for a fixed L):∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1

Shirshendu Ganguly (Berkeley) LDP 29 / 53



• For large L > (4 + δ), the probability of λ1 > L is much smaller and
can be ignored.

• Given the expression from the previous slide the final estimate is now
obtained by∫

L>λ1≥(4+δ)
fn,n(λ)dλ =

∫
L>λ1>(4+δ)

e−nI(λ1−4)+O(1)dλ1

≈
∑
i

1

n
e−nI(δ+

i
n

)

≤ 1

n
e−nI(δ)−I

′(δ)i

≈ e−nI(δ)−logn+O(1).

• The lower bound will follow by just considering the first term in the
sum.
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Key rigidity results used to make the previous discussion rigorous.
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Concentration via Log-Sobolev inequality

X is an N ×M (N ≤M) Complex Gaussian Matrices;
λ1 ≥ λ2 ≥ . . . λN are the eigenvalues of 1

NXX
∗.

tr(f) =
1

N

N∑
i=1

f(λi).

Theorem (Guionnet, Zeitouni)

For any Lipschitz f , there exists C > 0 depending on the Lipschitz
constant of f such that for all M,N and all δ > 0 we have

P
(
|tr(f)− E(tr(f))| ≥ δM +N

N

)
≤ e−Cδ2(M+N)2 .
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Square case

Theorem (Goetze-Tikhomirov ’14)

Let M = N and let ESM denote the expected empirical spectral
distribution of 1

MXX
∗. There exists an absolute constant C such that

dKS(ESM,MP) ≤ CN−1 for all N where dKS(·, ·) denote the
Kolmogorov-Smirnov distance between two distributions.

Suppose f : R→ R is C1 and ||f ′||1 <∞. Integration by parts implies
that ∣∣∣∣∫ f dESM−

∫
f dMP

∣∣∣∣ = O

(‖f ′‖1
n

)
.

• There are similar results by Bai-Silverstein, Guionnet, Johansson.
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Transversal fluctuation lower bound

v∗

Shirshendu Ganguly (Berkeley) LDP 34 / 53



Transversal fluctuation lower bound

Lemma

Fix δ > 0. There exists a constant C = C(δ) > 0 such that we have for
all n sufficiently large

P(T0,v∗ + T ′v∗,n) ≥ (4 + δ)n | Uδ(n)) ≤ C√
n

where v∗ = (n2 ,
n
2 )

•The LHS is bounded by sum over terms like

P(T0,v∗ ≥ (4 + δ1)n/2)P(Tv∗,n ≥ (4 + δ2)n/2)

with δ1 + δ2 ≥ δ and the precise LDP result for each of them along
with convexity of I(δ).
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• Take δ1 = δ + i
n , δ2 = δ − i

n .

P(T0,v∗ ≥ (4 + δ1)n/2)P(Tv∗,n ≥ (4 + δ2)n/2)

P(T0,n ≥ (4 + δ1)n)

≤ e−
n
2

[I(δ1)+I(δ2)]−2 logn+O(1)

e−nI(δ)−logn+O(1)
,

≈ 1

n
e−I

′′(δ) i
2

n .

So summing over i provides an O( 1√
n

) bound.

Same bound works for other points along the main anti-diagonal
by monotonicity.

This shows delocalization at scale
√
n.
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Stochastic inequalities for determinantal process

Let Y be an (M + 1)× (N − 1) matrix with standard complex Gaussian
entries, and let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃N−1 denote the eigenvalues of Y ∗Y .

Theorem

There exists a coupling such that almost surely

(λ̃1, λ̃2, · · · , λ̃N−1) ⊂ (λ1, λ2, · · · , λN ).

In particular we have λ1 � λ̃1, where � denotes stochastic domination.

The proof invokes an abstract result of Lyons about stochastic
comparisons of determinantal point processes whose kernels are
ordered.

We thank Manjunath Krishnapur for showing us how to prove this
result.
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Upper bound

To prove the upper bound one needs to understand precise LDP
for passage times T(1,1),(N

2
−C,N

2
+C).

Thus we have to analyze λ1 for non-square Wishart matrices
(M ×N where M = N + o(N)) and using Coulomb gas methods
would need to rely on rigidity results in this context.

Luckily they are available.
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For j = 1, 2, . . . , N let γj = γj,M,N denote the classical location of the
eigenvalues of 1

MXX
∗, i.e., γj,M,N are the solutions of the equations∫ γj,M,N

(1−√y)2
dMPy(x) = 1− j

N

where y = M
N . The following theorem gives comparison between the

classical locations γj and λj .

Theorem (B-Y-Y (2013))

For c > 0, let Ec denote the event that

{∃j ∈ [(logN)c log logN , N − (logN)c log logN ] such that

|λj − γj | ≥
c(logN)c log logN

min(j,N + 1− j) 1
3N

2
3

}.

There exists c > 0 such that for all sufficiently large N

P(Ec) ≤ e−(logN)c log logN
.
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Asymmetric case

Fix ε > 0.

Theorem

Let M = N + o(N), y = N
M ∈ (0, 1) then for all δ > 0,

logP(λ1 > (4 + δ)) = −NIy(δ) +O(N ε).

where for y ∈ (0, 1] and δ > 0,

Jy(δ) :=

∫
log(4 + δ − x)dMPy

Iy(δ) := −(2+y−1)+log y+1+(4+δ)y−1−(y−1−1)(log(4+δ))−2Jy(δ),

• y = 1, Iy(δ) = I(δ).
• One can replace the O(N ε) term by − log(N) +O(1) term with
Bai-Silversteins’ result.
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Key comparison of rate functions

• m1 = n+ c, n1 = n− c.
• (4 + δ̂)m1 = (4 + δ)n.

Lemma

Pm1,n1

(
λ1 ≥ (4 + δ̂)

)
= Pn,n (λ1 ≥ (4 + δ)) e−βδ(

c2

n
)+O( c

3

n2
+nε),

βδ = −10−
∫

log(4 + δ − x)dMP

+ (6 + δ)

∫
1

4 + δ − xdMP + 2

∫ 4

0

log(4 + δ − x)

2π
√
x(4− x)

dx.
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Key comparison of rate functions

• m1 = n+ c, n1 = n− c.
• (4 + δ̂)m1 = (4 + δ)n.

Lemma

Pm1,n1

(
λ1 ≥ (4 + δ̂)

)
= Pn,n (λ1 ≥ (4 + δ)) e−βδ(
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Proof of Transversal Fluctuation Upper Bound

• For v ∈ [0, n]2, let Γn(v) denote the maximal weight path from 0 to n
passing through v.
• Let Rn denote the set of all vertices v = (v1, v2) ∈ [0, n]2 such that
|v1 − v2| ≥ n1/2+ε.

Rn

Clearly it suffices to show that∑
v∈Rn

P(`(Γn(v)) ≥ (4 + δ)n)

P(Tn ≥ (4 + δ)n)
= o(1).
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Localization at Midpoint

v0

We will show for v0 ∈ Rn:

logP(T0,v0 + T ′v0,n ≥ (4 + δ)n) ≤ −nI(δ)− nε.

P(T0,v0 + T ′v0,n ≥ (4 + δ)n)

≤
∑

δ1+δ2≥2δ

P(T0,v0 ≥ (4 + δ1)
n

2
)P(T ′v0,n ≥ (4 + δ2)

n

2
).
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Remaining Steps

P(T0,v0 + T ′v0,n ≥ (4 + δ)n)

≤
∑

δ1+δ2≥2δ

P(T0,v0 ≥ (4 + δ1)
n

2
)P(T ′v0,n ≥ (4 + δ2)

n

2
).

To bound the RHS we use our comparison of rate function to

bound it by e−
c2

n times∑
δ1+δ2≥2δ

P(T0,n
2
≥ (4 + δ1)

n

2
)P(T ′n

2
,n ≥ (4 + δ2)

n

2
).

We use our refined LDP result for the square case along with
convexity of I(·) to bound this.

We see that the whole thing is at most

e−
c2

n Poly(n)P(T0,n ≥ (4 + δ)n).
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Transversal fluctuation for lower tail

• Let γ : [0, 1]→ [0, 1] be a
continuous increasing
surjection.

• For ε′ > 0, let

γε
′
n = {(x, y) ∈ [0, n]2 ∩ Z2 : |y − nγ(n−1x)| ≤ ε′n}.

Theorem (Basu, G., Sly (2017))

Fix δ ∈ (0, 4). Given any γ as above, and ε > 0 there exists ε′ > 0 such
that for all large enough n,

P(Γn ⊆ γε
′
n | Tn ≤ (4− δ)n) ≤ ε.
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Lower tail event: further observations

1 By the FKG inequality there is a coupling between the
unconditional field of weights and the conditional field of weights
such that the unconditional field is point-wise larger.

2 Previous argument shows that there are Θ(n2) many last passage
times which decrease in the coupled conditional field.

3 In turn this suggests that the polymer on the conditional
environment should not be contained in a set of size o(n2) with
high probability.

4 Formalizing this heuristic requires two ingredients.
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Fluctuation of Tn on the large deviation event

1 Conditional on Tn ≤ (4− δ)n, the value of Tn should be very close
to (4− δ)n.

2 In fact, the n2 speed of the large deviation suggests that
Tn ≈ (4− δ)n−Θ( 1

n).

3 One quick way to see this is to Taylor expand the rate function
(We will prove things in general settings where existence of rate
function was not known).

4 We can formalize this into the following statement:

Proposition

Fix δ ∈ (0, 4). Given any ε > 0 there exists H > 0 such that

P
(
Tn ≥ (4− δ)n− H

n
| Tn ≤ (4− δ)n

)
≥ 1− ε.
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Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



Rough argument

Condition on the environment
except for an anti-diagonal.

Unconditionally, the entries
are independent Exponentials.

Conditionally, they are still
independent.

Xv has conditional law to be
an Exponential conditioned to
be less than some barrier Mv

which is measurable with
respect to the conditioning.

Mv is precisely the value that would make the longest path passing
through v have weight (4− δ)n.

Shirshendu Ganguly (Berkeley) LDP 48 / 53



One of them wins

Mv is not too large (less than
M) for a significant fraction of
the vertices.

Otherwise there would not be
a macroscopic drop in the sum
of variables in the conditioned
field.

Thus the polymer passes
through the v for which
Mv −Xv is the smallest.

The weight of the polymer
would be (4 + δ)n− (Mv−Xv).

v
�v

Now the theorem follows from an observation similar to the one which
says maximum of n independent U [0, 1] variables is typically like
1−O( 1

n).
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Anti-concentration of the best path in a thin strip

1 Let A ⊂ [0, n]2 ∩ Z2 be a connected set containing (0, 0) and (n, n)
both.

2 Let Tn(A) denote the length of the longest directed path from
(0, 0) to (n, n) that lies entirely in A.

Proposition

Fix δ ∈ (0, 4). Given any H and ε > 0 there exists ε′ > 0 such that for
every deterministic set A ⊆ [0, n]2 ∩ Z2, with |A| ≤ ε′n2 we have

P
(
Tn(A) ≥ (4− δ)n− H

n
| Tn ≤ (4− δ)n

)
≤ ε.
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Result for Poissonian LPP

• In the case of Poissonian LPP, Tn is discrete.

• The polymer is typically non-unique.

• This results in subtle change of the delocalization statement that
we prove.

Theorem (Basu, G., Sly (2017))

Fixing δ ∈ (0, 2), for any increasing continuous γ : [0, 1]→ [0, 1] with
γ(0) = 0 and γ(1) = 1, there exists ε > 0, such that

P(Eγ,n | Tn ≤ (2− δ)n)→ 1

as n→∞, where Eγ,n denotes the event that there exists a polymer Γn
between (0, 0) and (n, n) that is not contained in γεn.
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Beyond integrable settings

• Proofs do not use any inputs from integrable probability.

• Properties of Exponential distribution makes the calculation easier
and more transparent.

• Can be generalized to a large class of LPP models.

Theorem (Basu, G., Sly (2017))

Let F be a probability measure on [0,∞) that has continuous and
non-increasing density and enough moments (or log-concave density).
For δ ∈ (0, µF ) and ε > 0, there exists ε′ > 0 such that for all
γ : [0, 1]→ [0, 1] surjective and increasing one has

P(Γn ⊆ γε
′
n | Tn ≤ (µF − δ)n) ≤ ε.

The key thing analyzed is the conditional distribution of the sum
of a bunch of i.i.d. random variables conditioned on their
projection on the unit L1 ball.
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Final remarks

• There has been a lot of recent activity trying to understand LDP
behavior for the KPZ equation, Corner growth height process etc.
relying on integrable inputs.

• In a recent work with Basu and Sly, we prove existence of the rate
function for various non-integrable models like First Passage
Percolation.

• One open question: Does the polymer conditioned on the upper
tail event converge to a Brownian bridge? A first step would be to
show that the transversal fluctuation at the midpoint is given by a
Gaussian.

Thank You
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