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Framework: 2D stochastic growth models

Consider stochastic growth modeled by a Markov chains with a local rule.
Typical questions include

• stationary states (for interface gradients)

• space-time correlations of height fluctuations

• hydrodynamic limit

In this talk we will consider a random tiling model with a specific
dynamics.



Warm up Example

Consider a Markov chain formed by stacking boxes (e.g. a 3D partition).
Stacks of boxes must be nonincreasing on each row and column. A box is
added at an available position with probability p and a box is removed
(provided it can be) with probability q.

• p = q corresponds to uniform measure is stationary and reversible

• p 6= q: growth model.

(Video). We focus on a measures on the plane.
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Overview picture in 2D
Let h be the height of an interface. For some cases, there exists a
stationary measure πρ such that

πρ(h(x)− h(y)) = ρ.(x − y)

where ρ is called the slope.

The interface grows at a speed

v(ρ) = lim
t→∞

h(x , t)− h(x , 0)

t

which is called the speed of growth.

One expects that at large distances between x and y√
Varπρ

(h(x)− h(y)) ∼ c1 + c2|x − y |α

and for large times√
Var(h(x , t)− h(x , 0)) ∼ c3 + c4t

β .

α is the roughness exponent while β is the growth exponent.
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Expected fluctuations

On expected large space-time scales, fluctuations are expected to be
described by a stochastic PDE of the form:

∂th(x , t) = ∆h(x , t) + λ 〈∇h(x , t),Hρ∇h(x , t)〉+ ξ(x , t)

where ξ is smoothed space time white noise and

Hρ = Hessianv(ρ).

When λ = 0, this is the Edwards Wilkinson equation with (αEW , βEW ).
More generally,

1 d = 1: Nonlinearity becomes important.

2 d ≥ 3: Predicted irrelevance of non-linearity at transition λc :
Magnen-Unterberger(18), Gu-Ryzhik-Zeitouni(17).

3 d = 2: Predicted irrelevance of non-linearity at transition λc when
replacing 〈∇h(x , t),Hρ∇h(x , t)〉 by |∇h(x , t)|2:
Chatterjee-Dunlop(18), Caravenna-Sun-Zygouras(18).
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Wolf’s Conjecture in 2D

Wolf found that there are two cases in 2D

• if det(Hρ) > 0, non-linearity is relevant, α 6= αEW , β 6= βEW ,
Isotropic KPZ.

• if det(Hρ) ≤ 0, non-linearity is irrelevant, Anisotropic KPZ.

Isotropic KPZ class supported only by numerics, e.g. Halpin-Healy et al.

Anisotropic KPZ, we have αEW = βEW = 0 and expect Varh(x , t) to
behave like log t as t →∞.

This was shown in special model by Prähofer-Spohn(97). There are other
examples too, such as Borodin-Ferrari(08), Toninelli(15),
Corwin-Toninelli (16), etc.

Question: What happens when v(ρ) is not twice differentiable? What
happens in a smooth phase?
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Some known results 1

Borodin-Ferrari(08) introduced a set of dynamics for lozenge tilings and
obtained a hydodynamic limit for a specified initial condition

lim
L→∞

1

L
h(xL, τL) = ψ(x , t)

where ∂tψ + v(∇ψ) = 0. Here, v is the speed of growth and is given by

v(ρ1, ρ2) = − sin(πρ1) sin(πρ2)

π sin(π(ρ1 + ρ2))
.

They also found that

1√
log L

[h(xL, τL)− E[h(xL, τL)]]

converges to N(0, 1/(2π)2) and that the model belongs to the AKPZ
class.
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Some known results

Toninelli(15) generalized these dynamics to the plane, with particles being
able to jump forward at rate p and backwards with rate q and showed

• dynamics are well-defined and stationary

• E[h(x , t)− h(x , 0)] = (q − p)tv

C.-Ferrari(15) found the formula for v and the small technical restriction
was removed in C.-Ferrari-Toninelli(17).

• Hydrodynamic limit for these dynamics proved in
Laslier-Toninelli(17).

• Shocks and hydrodynamic limit proved in Legras-Toninelli(17).

• Borodin-Corwin-Toninelli(15): q-Whittaker model
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Dimers on Z2

A dimer is an edge. A dimer covering is a subset of edges so that each
vertex is incident to exactly one edge.

Assign w : E → R>0, edge weights. The dimer model is

P[M] =
1

Z

∏
e∈M

w(e),

where Z is the partition function.
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Height function and phases

An idea dating back to Thurston(90) gives a surface representation to
dimer models on bipartite graphs. Heights are defined on faces, and the
height change is ±3 between faces with a dimer covering a shared edge
and ∓1 if there is no dimer covering the shared edge.

Up to height level, there is a one-to-one correspondence between dimer
configurations and the heights.

For dimer models on bipartite graphs, Kenyon-Okounkov-Sheffield(03)
characterized the measures on the plane and found that there were three
possible types:

• frozen or solid -configurations are deterministic

• rough or liquid - polynomial decay of correlations

• smooth or gas - exponential decay of correlations

Disclaimer: These are not physical states of matter and we use the
frozen, rough and smooth terminology to avoid any confusion.

Measures depend on the height profiles and the underlying graph.
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Two-periodic weighting on Z2

Not all dimer models give a smooth phase, but one which does is the
two-periodic weighting on Z2

a
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1

1

1

1

1

1

1

1

Here, edges incident to a face labelled a have edge weight a ∈ (0, 1).



Aztec diamond

The same weighting can be considered on an Aztec diamond which a
specific region of Z2 (purely for illustration):
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Dimer moves
The dynamics rely on two dimer moves that change the underlying graph.
Square move:

a

c

bd

A

C

BD

Here, the diagonal edges have weight 1, A = c/∆, B = d/∆, C = a/∆,
and D = b/∆ with ∆ = ac + bd . Note that

ZOld = ∆ZNew.

Edge contraction:

w1

w2

w3

w4

w1 w3

w2 w4

1 1
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Application to the torus

We can apply these dimer moves to the torus (ignore weights for now).
Apply the square move on the even faces and then on the odd faces, etc.
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The first has a choice which is determined by the edge weights.
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Weights

These are the dynamics for the shuffling algorithm of the Aztec diamond
introduced by Propp(03), but restricted to the torus. This restriction was
first introduced by Kenyon-Goncharov(11).

In the two-periodic setting the weights become remarkably simple and
can be computed:

• on the even time steps, vertical two by two blocks of dimers with
probability 1/2 and horizontal otherwise.

• on the odd time steps, vertical two by two blocks of dimers with
probability a2/(1 + a2) or 1/(1 + a2) depending on parity and
horizontal otherwise as well as parity of the even time steps.

From KOS, consider the torus with a slope and extend to the fullplane.
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Growth Model Summary

We can consider the growth model given by the shuffling algorithm:

• Heights x 7→ h(x)

• Growth process defined by the shuffling algorithm in discrete time:
h0, h1, . . .

• The dynamics are local,

• The dynamics preserve πρ in the two-periodic weighting.

• If ρ 6= 0, then πρ is rough, whereas if ρ = 0, πρ is smooth.
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Main results
With Toninelli, for ρ 6= 0, we found an explicit formula for v(ρ). Moreover

Theorem (C.-Toninelli(18))
For ρ 6= 0:

• Logarithmic growth of fluctuations:

Varπρ(h(x , t)− h(0, t)) = O(log t)

• Speed is twice differentiable with

detHρ < 0.

For ρ = 0:

• Bounded flucutations:

Varπρ
(h(x , t)− h(0, t)) = O(1)

• v is not twice-differentiable at ρ = 0.
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Main aspects of the proof

• Since the dynamics are local, the speed of growth is just a sum of
edge probabilities.

• Using Kenyon-Okounkov-Sheffield(03) (and C.-Johansson(14)), we
get good expressions for v .

• The rough phase results follow immediately, while it is not hard to
show that the speed is discontinuous from the explicit formula.
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Summary

• Introduced dynamics for the two-periodic weighting and showed
that non-differentiability of v corresponds to a smooth phase. Is this
true in general?

• Can easily have weights on Z2 which are not periodic under the
shuffling algorithm. They preserve the Newton Polygon but not the
probability measure. What happens then?

• Does the smooth phase and non-differentiability hold for all models
in the AKPZ class?
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