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The KPZ Fixed Point and Stochastic Integrability

It is the unique Markov process (h:(+; ho),t > 0) taking place on
UC (upper semicontinuous functions plus growth control) with
transition probabilities on cylindrical sets given by

Pho ( Ny {be(xi) < }/i}> =det(/ = K)2(x,xmpxry » (1)
where K = K(ho, y, t) is the Brownian Scattering operator as
introduced by Matetski, Quastel and Remenik (2017). The time
evolution of the transition probabilities can be linearized
through K (stochastic integrability).



Properties [Matetski, Quastel and Remenik (2017)]

KPZ 1:2:3 Scaling Invariance
Let hg(x) := o~ Tho(a?x). Then

ab -3 2x; b) dist. hi(x;bo),Va > 0 (as processes).

Stationarity: b = two-sided BM with o = 2
Take b(x) = h¢(x;b). Then,

Abi(x) := bi(x) — bt(0) st b(x),vt>0 (as processesin x).



Properties [Matetski, Quastel and Remenik (2017)]

Local Behaviour
Using (1) and kernel estimates for K one can get

e 12 (h1(ex) — 51(0)) T b(x),as € — 0,
in terms of finite dimensional distributions.

Ergodicity

The long time behaviour of the KPZ fixed point is essentially
equivalent to its local behaviour (1:2:3 scaling). If €'/2hg(e~") is
convergent in distribution (in UC) as ¢ — 0, then

Aby(x) == bi(x) — b:(0) 2F b(x) ,as t — oo,

in terms of finite dimensional distributions.



Properties [Matetski, Quastel and Remenik (2017)]

Airy Sheet
Start with hp = 9%, where 2%(z) = 0 and ?%(x) = —oo for x # z,
and define (uniqueness is still open)

A(z,Xx) = b1(x;0;) + (2 — x)?.

Airy Sheet Variational Formula
Foreach t > 0,

2
he(X; bo) = sup {ho(Z) + 113 A(2t2/3, xt=2/3%) — (Z—t")} .



Variational Formula and Coupling

Foreach t > 0,

_ 2
() = sup { (@) + 115 Azt 29, 20%) - B0

and

_ y)2
bi(x) := sup {b(z) + 1B A2t 23 xt2/%) — <ZtX>} .
z

Questions
Can we get ergodicity through variational formula? Do Abh; and
Ab; get close together as t — oo?



Convergence in Probability

Denote
If —glla:= sup [f(x)—g(x)|.
x€[—a,a
Theorem [P. '17]

Assume that €'/2hy(e~" x) is convergent in distribution (in UC)
ase — 0. Leta> 0and t > a%2. There exists a (variational)
coupling (b¢, bt) such that for every n > 0

at—2/3)1/4
Pl - Ablla > 1va) < (at2%) + c(n) ,

where C > 0 is a universal constant and lims_,o 8(5) = 0.



Convergence in Probability

Remark
In the first version of [P. 17] (arXiv:1708.06006) it was only

considered initial profiles ho € UC satisfying

€'2hg(e~x) = ho(x). In a upcoming version, the result is
extend to initial profiles hy € UC such that €'/2hy(e"x) is
convergent.



Totally Asymmetric Simple Exclusion Process

TASEP

» Markov process (7;, t > 0) with state space {0, 1}Z.
» When n;(x) = 1, we say that site x is occupied by a
particle at time ¢, and it is empty if n:(x) = 0.

» Particles jump to the neighbouring right site with rate 1
provided that the site is empty (the exclusion rule).
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TASEP
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Interface Growth Model

TASEP Growth
Let N; denote the total number of particles which jumped from
site 0 to site 1 during the time interval [0, t], and define

2N+ Yo, 4 (1= 2m(j))  fork > 1
(k) =\ 2N fork=0
2N — Z?:k+1(1 —2mp(j)) fork < —1.



Interface Growth Model

TASEP Growth

» Markov process (h;, t > 0) with state space ZZ.

» hi(k) is the value of height function at position k € Z at
time .

» Local minimum becomes local maximum with rate 1.



TASEP Growth
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TASEP Growth

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

Continuous time = 411

Figure: Scaling in a n?/3 x n'/3 rectangle.



TASEP Growth and the KPZ Fixed Point

Let )
tn — hy) (|2xrP/3|
bnt(X) := 2tr;ﬂ(/s ) )

where | x| denotes the integer part of x € R.

Theorem [Matetski, Quastel and Remenik '17]
If

dist.

lim bpo = ho,
n—oo

then
dist.

lim [Jn,t = htv
n—oo

where (h;,t > 0) is given by the KPZ fixed point.



Examples

» Narrow Wedge: h,o — 9, where 9(0) = 0 and 9(x) = —o0
for x # 0.

» Flat: hpo — 0.

» Stationary: h,o — b a two-sided BM with o = 2.

Remark
The initial profile of particles h("™ might depende on n, in such
way that for any hy € UC one can build a sequence of initial

particle profiles h(" such that b, o — ho.



The Corner Growth Model

Start with an initial profile h = (h(k))xez € (Z?)% constructed
from the particle configuration 79 as follows: h(0) = (0,0) and

h(k +1) = h(k) +no(k +1)(0, =1) + (1 —mo(k +1))(1,0).

The path h splits Z? into two regions and we denote Iy the
left-hand side one (including h).



The Corner Growth Model

Figure: Initial interface profile h, h(0) = 0.



The Corner Growth

The corner growth model (I't)s>o is described by the set I'; of
occupied vertices at time t:

» Each site (k, /) € I'{ becomes occupied at rate 1, once the
sites (k — 1,/) and (k,/ — 1) are both occupied.
The boundary of I'; and the TASEP height function h; (local

minima becomes local maxima at rate 1) have similar evolution
rules, up to a 45° rotation.



Corner Growth and the TASEP Height Function

For each (k, /) € T'g set L"(k, /) := 0 and for (k,/) € T§ let
L"(k,I) = time when (k, /) becomes occupied .

Thus,
M= {(k, ) ez?: LMk, I)< t} .

If we construct hy and h using the same initial particle
configuration 7o, and match the transition rates, the TASEP
height function and the occupation time are related as follows:
forallt > 0and x = (k,/) € Ip,

[k, )<t < h(k—1t)>k+1. )



LPP Time and the KPZ Fixed Point

For x e R and t > 0, we denote

[X]e = ([t] + [x], [t] = [x])
For n, t > 0 fixed, define the processes (for x € R)

L"[22/3 X/, — 4tn

h
Pnt(X) = =4 178

Using convergence of h, to the KPZ fixed point and (2) one can
show finite dimensional convergence of H! to the KPZ fixed
point, and it can extend it to functional convergence:

. dist. . nh dist.
Iflimp o bno = ho = I|mnaooH =" bt.



Last-Passage Percolation Time

The quantities L"(k, /) satisfies a recurrence relation:
LMKk, 1) = wi s+ max{L"k —1,1), LMk, —1)},

where {wy; : € Z?} is a collection of i.i.d. random variables
with exponential distribution of parameter 1.



Last-Passage Percolation Time

Point-to-point last-passage percolation (LPP) time:
» w={wz :z€Z}iid. Exp(1)rv,;
» Fory > x, lNx(y) = { up-right paths from xtoy };

> Ly(y) :=max {} ,c, wz : ™€ MNx(y)}.
Then

Ly(k, 1) = wi; + max{Lx(k —1,1), Lx(k,I —1)}.



Last-Passage Percolation Time

Figure: Up-right path.



Last-Passage Percolation Model

Figure: Up-right path.



Last-Passage Percolation Time

Curve-to-point LPP time:
» w={wz :z€Z}iid. Exp(1) r.v;
» Down-right path h = (h(k))kez;
» Fory > h, M"(y) = { up-right paths fromhto y };

> LM(y) i=max {Y o, wz : e M(y)}.
Then

LMKk, 1) = wi + max{L"k —1,1), L"(k,]—1)}.



Last-Passage Percolation Time

Figure: Curve to point paths.



Last-Passage Percolation Time

Point-to-point Lx(y) = L™(y) corresponds to curve-to-point with
initial profile: hy(0) =x —(1,1) and

0,-1) fork<O,
hx(k+1)_h*(k)—{§1 0)) for k > 0



Last-Passage Percolation Time

Figure: Curve to point and point to point.



LPP Model with Boundary

To construct the coupling and handle the proofs it is more
convenient to work with a slightly different LPP model where,
instead of having an initial interface profile, we work with a
boundary time profile along the coordinate axis.



LPP Model with Boundary Times

Denote Z* .= {z€Z : z> 0} and
b:={wd : x € Z* x {0} U {0} x Z*}

will be a collection of non-negative real numbers representing
the profile of passage times along the non-negative coordinate
axis, and we will always assume that W?o 0 = 0. To construct

the passage time environment w® = {w} : x € (Z*)?}, take the

same i.i.d. environment w as before, given by exponential
random variables of parameter 1, and set

b wx forx>(1,1)
Wy =
x wd  forx e Z* x {0} U {0} x Z*.



LPP Model with Boundary
Given a time profile b we define

YiGwp,; forz<o
b(z)=¢ 0 forz=0

Yiqwpo forz>0,
and for x = (k,/) > (0,0) and z € [/, K],

L,(x) = Liq,—z(x) forze[-1,0]
“ Liz1y(x)  forz e (0,K].

The last-passage percolation time to x = (k, /) > (0,0), with
time profile b, is defined as

LP(x) := max {b(2) + L(x)} .



Last-Passage Percolation Time

Figure: LPP with boundary.



Examples of Boundaries

Recovering L"
If we set w"'(0,0) = 0, and for k > 1 let

w"" (k,0) := L"(k,0) — L"(k —1,0)
w?" (0, k) := Lh(0, k) — Lh(0,k — 1),

then L""(x) = Lh(x), for all x > 0.



Last-Passage Percolation Time

Figure: Substrate and LPP with boundary.



Examples of Boundaries

Recovering L"

To go from h to x = (k, /) > 0 a maximal path must cross the
non-negative coordinate axis for the last time at some point
and, w.l.g., let us assume that this point is (Z,0). Thus,

L"x) = ["Z,0)+L((Z,1),%)
b'(Z) + Lz(x)

LY (x).

IN

Since
b"(z) + Ly(x) < L"(x), Vz € (—1,k)

we have the other inequality.



Examples of Boundaries

Stationary LPP

Let p € (0,1) and set w”(0,0) = 0, and for k > 1 let

w(k,0) ~ Expq x(1 — p) and w?(0, k) ~ Exp, «(p) be a
collection of independent variables. Recall [k], = (n+ k,n — k)
and define

¢* = LP[K]n — LPlk —1]p, for k=—n+1,....n

Then { gk tk=-n+ 1,...,n} is a collection of i.i.d. random
variables with

¢t B Expy (1 - p) — Expa(p). 3)

where Exp4(1 — p) and Exp,(p) are independent.



Scaling Local LPP Increments

For n, t > 0 fixed, define the processes

_ LPxPP)n — LP[0]m

p .
Af (x) = 537271/ ,X€ER.
Then (Donsker’s Theorem)
lim A2 AL,

n—oo

where (A;/Z(x) , X € R) is a standard two-sided Brownian
Motion (for all t > 0).



Scaling Local LPP Increments

For n, t > 0 fixed, define the processes

_ LP[xn?/3) — LM[0]m

h .
Ap(X) = 03/271/3 XeR.
Thus,
Hp 1(x) = Hp ((0) + 218 A} ((2%/%x) .
Then
JNim An %A where 21/6AM(22/3.) B Apy(-).

Then all we have to do is to show that A and A;/z get close
to each other as t — oo.



Coupling LPP with Different Boundaries

Given boundary profiles b', ..., bk, the basic coupling is a joint
realization L, ..., L% of the last-passage times that is defined
by constructing the passage times w"", ..., wP with the same w.

In the next lemmas we will assume that all the joint realisations
are given by the basic coupling.



Local Comparison and Attractiveness

Lemma 1 [Local Comparison]

Let
Z°(x) := maxarg max {b(z)+ L(x)} .
ze[—-1,K]

Fori <jand n>1,if Z%[j], < Z]i], then
Lo [fln = LPM[i]n < L%2[f]n — L[]
Lemma 2 [Attractiveness]
Assume that bq(j) — by (i) < ba(j) — bo(i) forall i < j. Then

Lol = L[l < L*2[fln — L[], ¥i <.



Sandwiching Increments

In the basic coupling context, one can always take a joint
realisation (A,, £ 1/2) by taking the boundary b" and the
stationary one with parameter 1/2. Thanks to fundamental
properties of this coupling (local comparison and
attractiveness), we will be able to show that they will stay
uniformly close to each other, and then the same will be true for
the limit processes.



Sandwiching Increments

» The equilibrium initial profile with p = 1/2 will be tilted
slightly, p;,, = 1/2 & r(tn)~"/3, so that the sandwiching
effect, between a given general profile and its counterpart
at the tilted equilibrium, in Lemma 1 is forced, either on the
left or the right, according to the sign of the tilt.

» The basic coupling will be construct in such way that the
tilted profiles are initially ordered, and by attractiveness,
they will remain ordered at all times, which will ensure

uniform bounds for the distance between A}, ; and A:,/l?



Localisation

Lemma 3 [KPZ Localisation]
Recall §; := at—2/3 and set

1 5V

+ !
ont = 2% ()13

Let E(n, t) denote the event that
ZPni[an?®)y, < Z°-ar/®y, and ZMan?/3, < ZPni—an?/?)y.
There exists a function 6(6) > 0 such that lims_,o 6(6) = 0 and

limsupP (E(n, t)°) < 6(5).

n—oo



Proof of the Theorem

Given a profile b'/2 define b* by setting

1 1/2
N 205, 2(0)2) forz <0
Wx = 1 1/2
21— ¥(z0) forz>0.

(Ordering the initial profiles.) Thus, w* st wpit, and

b=(j) — b~ (i) < b2(j) — b/2(7) < () — b (7), i<,



Proof of the Theorem

By local comparison (Lemma 1), on the event E(n, t),
AL (X) < ARy(x) < AF (%), for x € [0, g,

and
Aﬁ,j,(x) < A*}Lt(x) < A;t(x), for x € [-a,0].

By attractiveness (Lemma 2)
Aj(x) < AVE(X) < Af(x), forx >0,

and
Al (x) <A 1/2(x)<A 4(x), forx <0 .

n, —



Proof of Theorem

Hence, on the event E(n, t),

A () — AYE0

n,t

IN

(A;t(x) - A;t(x)) 1{x € [0, 4]}
+ (A;,(x) - A;,(x)) 1{x € [-a,0]}
< Ajla)-An(a

+ Ap(-a)-Af(-a),

for all x € [—a, a]. By attractiveness, A7 (x) — A, ,(X)
increases with x, which implies the second inequality.



Proof of Theorem

This shows that, on the event E(n, t),
A2
8% = ALl < Ine(a),
where
Int(a) := A;;t(a) —Ap(a)+ A, (—a) - A;,t(_a) .

Therefore (notice that /5 1(a) > 0)

P (Il — AYZlla > V&) < P (E(n, 1) + —tndl@)



Proof of Theorem

By KPZ localisation (Lemma 3),

limsupP (E(n, t)°) < 6(5).

n—oo

Using (3), together with simple calculations, we get

limsupE (In¢(a)) < Cvas,’*.

n—oo



