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The KPZ Fixed Point and Stochastic Integrability

It is the unique Markov process (ht (·; h0) , t ≥ 0) taking place on
UC (upper semicontinuous functions plus growth control) with
transition probabilities on cylindrical sets given by

Ph0
(
∩m

i=1 {ht (xi) ≤ yi}
)

= det (I − K )L2({x1,...,xm}×R) , (1)

where K = K (h0, y , t) is the Brownian Scattering operator as
introduced by Matetski, Quastel and Remenik (2017). The time
evolution of the transition probabilities can be linearized
through K (stochastic integrability).



Properties [Matetski, Quastel and Remenik (2017)]

KPZ 1:2:3 Scaling Invariance
Let hα0 (x) := α−1h0(α2x). Then

αhα−3t (α
−2x ; hα0 )

dist .
= ht (x ; h0) ,∀α > 0 (as processes) .

Stationarity: b ≡ two-sided BM with σ = 2
Take bt (x) ≡ ht (x ; b). Then,

∆bt (x) := bt (x)− bt (0)
dist .
= b(x) , ∀ t ≥ 0 (as processes in x) .



Properties [Matetski, Quastel and Remenik (2017)]

Local Behaviour
Using (1) and kernel estimates for K one can get

ε−1/2 (h1(εx)− h1(0))
dist .→ b(x) ,as ε→ 0 ,

in terms of finite dimensional distributions.

Ergodicity
The long time behaviour of the KPZ fixed point is essentially
equivalent to its local behaviour (1:2:3 scaling). If ε1/2h0(ε−1) is
convergent in distribution (in UC) as ε→ 0, then

∆ht (x) := ht (x)− ht (0)
dist .→ b(x) ,as t →∞ ,

in terms of finite dimensional distributions.



Properties [Matetski, Quastel and Remenik (2017)]

Airy Sheet
Start with h0 = dz , where dz(z) = 0 and dz(x) = −∞ for x 6= z,
and define (uniqueness is still open)

A(z, x) := h1(x ; dz) + (z − x)2 .

Airy Sheet Variational Formula
For each t > 0,

ht (x ; h0) = sup
z

{
h0(z) + t1/3A(zt−2/3, xt−2/3)− (z − x)2

t

}
.



Variational Formula and Coupling

For each t > 0,

ht (x) := sup
z

{
h0(z) + t1/3A(zt−2/3, xt−2/3)− (z − x)2

t

}
,

and

bt (x) := sup
z

{
b(z) + t1/3A(zt−2/3, xt−2/3)− (z − x)2

t

}
.

Questions
Can we get ergodicity through variational formula? Do ∆ht and
∆bt get close together as t →∞?



Convergence in Probability

Denote
||f − g||a := sup

x∈[−a,a]
|f (x)− g(x)| .

Theorem [P. ’17]
Assume that ε1/2h0(ε−1x) is convergent in distribution (in UC)
as ε→ 0. Let a > 0 and t ≥ a3/2. There exists a (variational)
coupling (ht , bt ) such that for every η > 0

P
(
||∆ht −∆bt ||a > η

√
a
)
≤ θ(at−2/3) + C

(at−2/3)1/4

η
,

where C > 0 is a universal constant and limδ→0 θ(δ) = 0.



Convergence in Probability

Remark
In the first version of [P. ’17] (arXiv:1708.06006) it was only
considered initial profiles h0 ∈ UC satisfying
ε1/2h0(ε−1x) = h0(x). In a upcoming version, the result is
extend to initial profiles h0 ∈ UC such that ε1/2h0(ε−1x) is
convergent.



Totally Asymmetric Simple Exclusion Process

TASEP
I Markov process (ηt , t ≥ 0 ) with state space {0,1}Z.
I When ηt (x) = 1, we say that site x is occupied by a

particle at time t , and it is empty if ηt (x) = 0.
I Particles jump to the neighbouring right site with rate 1

provided that the site is empty (the exclusion rule).



TASEP

0 1 2 3 4-1-2-3-4

Rate 1

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



TASEP

0 1 2 3 4-1-2-3-4

Particles jump to the right with rate 1 
provided the site is empty.



Interface Growth Model

TASEP Growth
Let Nt denote the total number of particles which jumped from
site 0 to site 1 during the time interval [0, t ], and define

ht (k) =





2Nt +
∑k

j=1(1− 2ηt (j)) for k ≥ 1
2Nt for k = 0
2Nt −

∑0
j=k+1(1− 2ηt (j)) for k ≤ −1 .



Interface Growth Model

TASEP Growth
I Markov process (ht , t ≥ 0 ) with state space ZZ.
I ht (k) is the value of height function at position k ∈ Z at

time t .
I Local minimum becomes local maximum with rate 1.



TASEP Growth

0 1 2 3 4-1-2-3-4

0



TASEP Growth

0 1 2 3 4-1-2-3-4

0



TASEP Growth

0 1 2 3 4-1-2-3-4

0



TASEP Growth

0 1 2 3 4-1-2-3-4

0



TASEP Growth

0 1 2 3 4-1-2-3-4

0



TASEP Growth
TASEP: step initial condition 10

Simulation with step initial condition: xk(0) = �k, k 2 N.

Introduction KPZ - Universality 1Order KPZ KPZ class Meso Universality

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).



TASEP GrowthTASEP: step initial condition 10

Simulation with step initial condition: xk(0) = �k, k 2 N.

Introduction KPZ - Universality 1Order KPZ KPZ class Meso Universality

Figure: Narrow Wedge Initial Profile (Patrick Ferrari, Univ. Bonn).
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Simulation with flat initial condition: xk(0) = �2k, k 2 Z.
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Figure: Flat Initial Profile (Patrick Ferrari, Univ. Bonn).
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TASEP Growth

THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS 13

Figure 3. A simulation of the height function fluctuations for the γ = 1 corner
growth model started in the wedge initial condition. The curve represents the limit
shape (a parabola) while the piecewise linear line represents the height function.
Fluctuations live on the t1/3 scale and are correlated spatially in the t2/3 scale (as
indicated by the box). Special thanks to Patrik Ferrari for the above simulation.

1.2.3. Fluctuations: asymmetry versus symmetry. In 1985, based on physical methods known as
mode-coupling, [20] argued that the simple exclusion process with positive asymmetry γ > 0
should have height function fluctuations like t1/3 and exhibit non-trivial spatial correlations on
the t2/3 scale. After the work of [98] this behavior became known as being in the KPZ universality
class. On the other hand, the symmetric case γ = 0 corresponds to the EW (Edwards-Wilkinson)

class [65] and have fluctuations of scale t1/4 with spatial correlation on the scale of t1/2. For the
EW class, the limiting fluctuation statistics were also predicted (and relatively easily proved – see
for example [157]) to be Gaussian, however for the KPZ class the limiting fluctuation statistics
were not found until the work of Baik, Deift and Johansson [9, 93] and then Prähofer and Spohn
[137] (for the spatial correlation). These works only dealt with the totally asymmetric (γ = 1)
simple exclusion process for step initial condition (or equivalently the corner growth model in
the wedge geometry) – which is illustrated in Figure 3. Tracy and Widom [165] extended the
one-point fluctuation results to γ > 0 by way of their exact formula, recorded here as Theorem
1.4. It is clear that in order to treat all values of γ > 0 equivalently, we should speed up time
to compensate for smaller growth asymmetry: we should take time like t/γ. The t/2 which is
subtracted from hγ comes directly from the hydrodynamic theory. Putting together the one-point
fluctuation results of [93, 165] we have:

Theorem 1.5. For all γ ∈ (0, 1] and for ρ− = 0 and ρ+ = 1

lim
t→∞

P

(
h( t

γ , 0) − t
2

2−1/3t1/3
≥ −s

)
= FGUE(s).

Thus we see a critical point: For any γ > 0, fluctuations scale like t1/3 and have limiting GUE
statistics, while for γ = 0, fluctuations scale like t1/4 and have limiting Gaussian statistics. Thus,
scaling γ to zero with the other model parameters one would hope to find a scaling limit which

Figure: Scaling in a n2/3 × n1/3 rectangle.



TASEP Growth and the KPZ Fixed Point

Let

hn,t (x) :=
tn − h(n)

2tn

(
b2xn2/3c

)

n1/3 ,

where bxc denotes the integer part of x ∈ R.

Theorem [Matetski, Quastel and Remenik ’17]
If

lim
n→∞

hn,0
dist .
= h0 ,

then
lim

n→∞
hn,t

dist .
= ht ,

where (ht , t ≥ 0) is given by the KPZ fixed point.



Examples

I Narrow Wedge: hn,0 → d, where d(0) = 0 and d(x) = −∞
for x 6= 0.

I Flat: hn,0 → 0.

I Stationary: hn,0 → b a two-sided BM with σ = 2.

Remark
The initial profile of particles h(n) might depende on n, in such
way that for any h0 ∈ UC one can build a sequence of initial
particle profiles h(n) such that hn,0 → h0.



The Corner Growth Model

Start with an initial profile h = (h(k))k∈Z ∈ (Z2)Z constructed
from the particle configuration η0 as follows: h(0) = (0,0) and

h(k + 1) = h(k) + η0(k + 1)(0,−1) + (1− η0(k + 1))(1,0) .

The path h splits Z2 into two regions and we denote Γ0 the
left-hand side one (including h).



The Corner Growth Model

0

Figure: Initial interface profile h, h(0) = 0.



The Corner Growth

The corner growth model (Γt )t≥0 is described by the set Γt of
occupied vertices at time t :

I Each site (k , l) ∈ Γc
t becomes occupied at rate 1, once the

sites (k − 1, l) and (k , l − 1) are both occupied.
The boundary of Γt and the TASEP height function ht (local
minima becomes local maxima at rate 1) have similar evolution
rules, up to a 45o rotation.



Corner Growth and the TASEP Height Function

For each (k , l) ∈ Γ0 set Lh(k , l) := 0 and for (k , l) ∈ Γc
0 let

Lh(k , l) = time when (k , l) becomes occupied .

Thus,
Γt =

{
(k , l) ∈ Z2 : Lh(k , l) ≤ t

}
.

If we construct h0 and h using the same initial particle
configuration η0, and match the transition rates, the TASEP
height function and the occupation time are related as follows:
for all t ≥ 0 and x = (k , l) ∈ Γ0,

Lh(k , l) ≤ t ⇐⇒ h(k − l , t) ≥ k + l . (2)



LPP Time and the KPZ Fixed Point

For x ∈ R and t ≥ 0, we denote

[x ]t ≡ (btc+ bxc, btc − bxc) .

For n, t ≥ 0 fixed, define the processes (for x ∈ R)

Hh
n,t (x) =

Lh[22/3xn2/3]tn − 4tn
24/3n1/3 .

Using convergence of hn to the KPZ fixed point and (2) one can
show finite dimensional convergence of Hh

n to the KPZ fixed
point, and it can extend it to functional convergence:

If limn→∞ hn,0
dist .
= h0 ⇒ limn→∞Hh

n,t
dist .
= ht .



Last-Passage Percolation Time

The quantities Lh(k , l) satisfies a recurrence relation:

Lh(k , l) = ωk ,l + max{Lh(k − 1, l) , Lh(k , l − 1)} ,

where
{
ωk ,l :∈ Z2} is a collection of i.i.d. random variables

with exponential distribution of parameter 1.



Last-Passage Percolation Time

Point-to-point last-passage percolation (LPP) time:

I ω = {ωz : z ∈ Z} i.i.d. Exp(1) r.v.;

I For y ≥ x, Πx(y) = { up-right paths from x to y };

I Lx(y) := max
{∑

z∈π ωz : π ∈ Πx(y)
}

.
Then

Lx(k , l) = ωk ,l + max{Lx(k − 1, l) , Lx(k , l − 1)} .
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Figure: Up-right path.
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Figure: Up-right path.



Last-Passage Percolation Time

Curve-to-point LPP time:

I ω = {ωz : z ∈ Z} i.i.d. Exp(1) r.v.;

I Down-right path h = (h(k))k∈Z;

I For y ≥ h, Πh(y) = { up-right paths from h to y };

I Lh(y) := max
{∑

z∈π ωz : π ∈ Πh(y)
}

.
Then

Lh(k , l) = ωk ,l + max{Lh(k − 1, l) , Lh(k , l − 1)} .
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Figure: Curve to point paths.



Last-Passage Percolation Time

Point-to-point Lx(y) = Lhx(y) corresponds to curve-to-point with
initial profile: hx(0) = x− (1,1) and

hx(k + 1)− hx(k) =

{
(0,−1) for k < 0 ,
(1,0) for k ≥ 0 ,



Last-Passage Percolation Time

x

Figure: Curve to point and point to point.



LPP Model with Boundary

To construct the coupling and handle the proofs it is more
convenient to work with a slightly different LPP model where,
instead of having an initial interface profile, we work with a
boundary time profile along the coordinate axis.



LPP Model with Boundary Times

Denote Z∗ := {z ∈ Z : z ≥ 0} and

b := {ωb
x : x ∈ Z∗ × {0} ∪ {0} × Z∗}

will be a collection of non-negative real numbers representing
the profile of passage times along the non-negative coordinate
axis, and we will always assume that ωb

(0,0) = 0. To construct
the passage time environment ωb =

{
ωb

x : x ∈ (Z∗)2}, take the
same i.i.d. environment ω as before, given by exponential
random variables of parameter 1, and set

ωb
x =

{
ωx for x ≥ (1,1)
ωb

x for x ∈ Z∗ × {0} ∪ {0} × Z∗ .



LPP Model with Boundary

Given a time profile b we define

b(z) =





∑−z
i=1 ω

b
0,i for z < 0

0 for z = 0∑z
i=1 ω

b
i,0 for z > 0 ,

and for x = (k , l) > (0,0) and z ∈ [−l , k ],

L̄z(x) =

{
L(1,−z)(x) for z ∈ [−l ,0]
L(z,1)(x) for z ∈ (0, k ] .

The last-passage percolation time to x = (k , l) > (0,0), with
time profile b, is defined as

Lb(x) := max
z∈[−l,k ]

{
b(z) + L̄z(x)

}
.



Last-Passage Percolation Time

0

Figure: LPP with boundary.



Examples of Boundaries

Recovering Lh

If we set ωbh
(0,0) = 0, and for k ≥ 1 let
{
ωbh

(k ,0) := Lh(k ,0)− Lh(k − 1,0)

ωbh
(0, k) := Lh(0, k)− Lh(0, k − 1) ,

then Lbh
(x) = Lh(x), for all x > 0.



Last-Passage Percolation Time

0

Figure: Substrate and LPP with boundary.



Examples of Boundaries

Recovering Lh

To go from h to x = (k , l) > 0 a maximal path must cross the
non-negative coordinate axis for the last time at some point
and, w.l.g., let us assume that this point is (Z ,0). Thus,

Lh(x) = Lh(Z ,0) + L((Z ,1),x)

= bh(Z ) + L̄Z (x)

≤ Lbh
(x) .

Since
bh(z) + L̄z(x) ≤ Lh(x) , ∀ z ∈ (−l , k)

we have the other inequality.



Examples of Boundaries

Stationary LPP
Let ρ ∈ (0,1) and set ωρ(0,0) = 0, and for k ≥ 1 let
ωρ(k ,0) ∼ Exp1,k (1− ρ) and ωρ(0, k) ∼ Exp2,k (ρ) be a
collection of independent variables. Recall [k ]n ≡ (n + k ,n − k)
and define

ζρn,k := Lρ[k ]n − Lρ[k − 1]n , for k = −n + 1, . . . ,n .

Then
{
ζρn,k : k = −n + 1, . . . ,n

}
is a collection of i.i.d. random

variables with

ζρn,k
dist .
= Exp1(1− ρ)− Exp2(ρ) , (3)

where Exp1(1− ρ) and Exp2(ρ) are independent.



Scaling Local LPP Increments

For n, t ≥ 0 fixed, define the processes

∆ρ
n,t (x) :=

Lρ[xn2/3]tn − Lρ[0]tn
23/2n1/3 , x ∈ R .

Then (Donsker’s Theorem)

lim
n→∞

∆
1/2
n,t

dist .
= ∆

1/2
t ,

where (∆
1/2
t (x) , x ∈ R) is a standard two-sided Brownian

Motion (for all t ≥ 0).



Scaling Local LPP Increments

For n, t ≥ 0 fixed, define the processes

∆h
n,t (x) :=

Lh[xn2/3]tn − Lh[0]tn
23/2n1/3 , x ∈ R .

Thus,
Hh

n,t (x) = Hh
n,t (0) + 21/6∆h

n,t (2
2/3x) .

Then

lim
n→∞

∆h
n,t

dist .
= ∆h0

t , where 21/6∆h0
t (22/3·) dist .

= ∆ht (·) .

Then all we have to do is to show that ∆h0
t and ∆

1/2
t get close

to each other as t →∞.



Coupling LPP with Different Boundaries

Given boundary profiles b1, . . . , bk , the basic coupling is a joint
realization Lb1 , . . . ,Lbk of the last-passage times that is defined
by constructing the passage times ωb1 , . . . , ωbk with the same ω.
In the next lemmas we will assume that all the joint realisations
are given by the basic coupling.



Local Comparison and Attractiveness

Lemma 1 [Local Comparison]
Let

Z b(x) := max arg max
z∈[−l,k ]

{
b(z) + L̄z(x)

}
.

For i ≤ j and n ≥ 1, if Z b1 [j]n ≤ Z b2 [i]n then

Lb1 [j]n − Lb1 [i]n ≤ Lb2 [j]n − Lb2 [i]n .

Lemma 2 [Attractiveness]
Assume that b1(j)− b1(i) ≤ b2(j)− b2(i) for all i ≤ j . Then

Lb1 [j]n − Lb1 [i]n ≤ Lb2 [j]n − Lb2 [i]n , ∀ i ≤ j .



Sandwiching Increments

In the basic coupling context, one can always take a joint
realisation (∆h

n,t ,∆
1/2
n,t ), by taking the boundary bh and the

stationary one with parameter 1/2. Thanks to fundamental
properties of this coupling (local comparison and
attractiveness), we will be able to show that they will stay
uniformly close to each other, and then the same will be true for
the limit processes.



Sandwiching Increments

I The equilibrium initial profile with ρ = 1/2 will be tilted
slightly, ρ±n,t = 1/2± rt (tn)−1/3, so that the sandwiching
effect, between a given general profile and its counterpart
at the tilted equilibrium, in Lemma 1 is forced, either on the
left or the right, according to the sign of the tilt.

I The basic coupling will be construct in such way that the
tilted profiles are initially ordered, and by attractiveness,
they will remain ordered at all times, which will ensure
uniform bounds for the distance between ∆h

n,t and ∆
1/2
n,t .



Localisation

Lemma 3 [KPZ Localisation]
Recall δt := at−2/3 and set

ρ±n,t :=
1
2
± δ

−1/4
t

(tn)1/3 .

Let E(n, t) denote the event that

Z ρ−n,t [an2/3]tn ≤ Z h[−an2/3]tn and Z h[an2/3]tn ≤ Z ρ+n,t [−an2/3]tn .

There exists a function θ(δ) ≥ 0 such that limδ→0 θ(δ) = 0 and

lim sup
n→∞

P
(
E(n, t)c) ≤ θ(δt ) .



Proof of the Theorem

Given a profile b1/2 define b± by setting

ω±x =





1
2ρ±n,t

ω
1/2
(0,|z|) for z < 0

1
2(1−ρ±n,t )

ω
1/2
(z,0) for z > 0 .

(Ordering the initial profiles.) Thus, ω± dist .
= ωρ

±
n,t , and

b−(j)− b−(i) ≤ b1/2(j)− b1/2(i) ≤ b+(j)− b+(i) , if i < j .



Proof of the Theorem

By local comparison (Lemma 1), on the event E(n, t),

∆−n,t (x) ≤ ∆h
n,t (x) ≤ ∆+

n,t (x) , for x ∈ [0,a] ,

and
∆+

n,t (x) ≤ ∆h
n,t (x) ≤ ∆−n,t (x) , for x ∈ [−a,0] .

By attractiveness (Lemma 2)

∆−n,t (x) ≤ ∆
1/2
n,t (x) ≤ ∆+

n,t (x) , for x ≥ 0 ,

and
∆+

n,t (x) ≤ ∆
1/2
n,t (x) ≤ ∆−n,t (x) , for x ≤ 0 .



Proof of Theorem

Hence, on the event E(n, t),

|∆h
n,t (x)−∆

1/2
n,t (x)| ≤

(
∆+

n,t (x)−∆−n,t (x)
)
1{x ∈ [0,a]}

+
(

∆−n,t (x)−∆+
n,t (x)

)
1{x ∈ [−a,0]}

≤ ∆+
n,t (a)−∆−n,t (a)

+ ∆−n,t (−a)−∆+
n,t (−a) ,

for all x ∈ [−a,a]. By attractiveness, ∆+
n,t (x)−∆−n,t (x)

increases with x , which implies the second inequality.



Proof of Theorem

This shows that, on the event E(n, t),

||∆h
n,t −∆

1/2
n,t ||a ≤ In,t (a) ,

where

In,t (a) := ∆+
n,t (a)−∆−n,t (a) + ∆−n,t (−a)−∆+

n,t (−a) .

Therefore (notice that In,t (a) ≥ 0)

P
(
||∆h

n,t −∆
1/2
n,t ||a > η

√
a
)
≤ P

(
E(n, t)c)+

E (In,t (a))

η
√

a
.



Proof of Theorem

By KPZ localisation (Lemma 3),

lim sup
n→∞

P
(
E(n, t)c) ≤ θ(δt ) .

Using (3), together with simple calculations, we get

lim sup
n→∞

E (In,t (a)) ≤ C
√

a δ1/4
t .


