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Motivations

In 1996, Vershik showed an interesting limit theorem for 2D
Young diagrams sampled via certain ensembles, in particular
the uniform ensemble.

–Later, we will refer to this type of limit as a ‘static’ limit.

More recently, in 2010, Funaki and Sasada considered an
associated stochastic evolution of these 2D diagrams in time,
and showed a hydrodynamic limit.

–This is what we mean by a ‘dynamical’ limit.



In this talk, we consider the behaviors under different Young
diagram ensembles and evolutions.
–These different models provide a richer setting, allowing for
different scalings, and ‘abstract modeling’ say of ‘polymer
dynamics’ for instance.

–In particular, the hydrodynamic limits found depend on the
type of ensemble chosen. The method of proof differs from
previous work.



Notation on 2D Young diagrams

Let p = (p1,p2,p3, . . . ,pn), where pk ≥ pk+1, be a partition of
the integer

M(p) =
n∑

k=1

pk .

For example, p = (4,2,2,1) is a partition of

9 = 4 + 2 + 2 + 1



Let
ξ(k) = #{m : pm = k}

be the count of ‘particles’ or ‘polymers’ of length k .

–So, ξ = (1,2,0,1,0, . . .)

Define the ‘height’ function

ψ(x) =
∑
k≥x

ξ(k).

Then, the associated ‘Young diagram’ is the graph of ψ.



The Young diagram corresponding to p = (4,2,2,1) or
ξ = (1,2,0,1,0 . . .).

p = (4,2,2,1)
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The number of squares equals

M(p) :=
n∑

k=1

pk =
n∑

k=1

kξ(k) =

∫ ∞
0

ψ(x)dx .



Moreover, ξ(k) = ψ(k)− ψ(k + 1) can be viewed as negative
gradient of ψ at k :

ψ(x)
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ξ = (1,2,0,1,0, . . .)
1 2 3 4



To take limits as M →∞, we rescale the diagram widths and
heights, say by µx and µy , to be chosen later.

After rescaling, the area of the Young diagram is µx µy M, which
we would like to be O(1).
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A result of Vershik ’96

Let PM be the uniform probability on all partitions of M,

e.g. (4,2,2,1) and (5,4) are equally likely with respect to
M = 9.

For any partition p, consider the rescaled shape function

ψM(x ; p) =
1√
M
ψ(x
√

M; p)

–So, here, µx = µy = M−1/2.



Result

As M →∞, ψM concentrates near

ψ(x) = −
√

6
π

ln
(

1− e−πx/
√

6
)
.

–That is,

lim
M→∞

PM

{
sup

x∈[a,b]
|ψM(x ; p)− ψ(x)| > ε

}
= 0.



There are also other ‘static’ limits with respect to other
ensembles, say, Haar statistics, and Plancherel, Ewens
measures:

Erlihson-Granovsky ’08,
Kerov-Vershik ’77,
Yakubovich ’12, etc.

–We will describe the ones introduced in Fatkullin-Slastikov ’18



The uniform measure PM can be thought as the canonical
ensemble corresponding to the grand canonical ensemble

Pκ(ξ) =
1
Zκ

e−κM(ξ).

–Here κ > 0 is a chemical potential.



Consider the family of grand canonical ensembles in
Fatkullin-Slastikov ’18, which includes Pκ:

Pβ,N(ξ) =
1

Zβ,N
e−β

∑
k≥1 ξ(k)Ek−N−1M(ξ).

Here β ≥ 0 is the inverse temperature,

and we have taken κ = N−1 as the chemical potential, in terms
of a scaling parameter N.



Observe that the grand canonical ensemble

Pβ,N(ξ) =
1

Zβ,N
e−β

∑
k∈N ξ(k)Ek−N−1 ∑

k∈N kξ(k).

has a product structure:

Pβ,N(ξ) =
∞∏

k=1

Pβ,N,k (ξ(k))

where Pβ,N,k is Geometric with parameter

θk = e−βEk−k/N ,

that is, for n ≥ 0,

Pβ,N,k (n) = (1− θk )θn
k .



Each size k carries in a sense an energy Ek .

–When β > 0, if Ek >> ln k , the measure concentrates on
finitely many particles.



So, we consider Ek in the form

Ek = u(ln k)

where u(·) : R+ 7→ R+
◦ is a function with properties:

u(·) is differentiable, and u′(·) is bounded.

Also, limx→∞ u(x) =∞, and limx→∞ u′(x) = 0 or 1.

–For instance,

I u(x) ∼ x or
I u(x) ∼ ln(x) would be fine.



These are instances in the two classes that we discuss here:

I ‘Ek ∼ ln k ’ denotes the case limx→∞ u′(x) = 1
I ‘1� Ek � ln k ’ stands for the case limx→∞ u′(x) = 0.

–We note the measure, in the case ‘1� Ek � ln k ’,
penalizes less the number of particles with large size k ,
than in the case ‘Ek ∼ ln k ’.



‘Static’ limit results in FS ’18

Let Nβ = eβEk .

From our assumptions,

Nβ =

{
1 when β = 0

o(N) when β > 0.

One can show that, with respect to Pβ,N , that there are an order

E [M] = N2N−1
β

number of squares under the diagram.

–We will rescale µx = 1/N and µy = Nβ/N and form

ψN(x) :=
Nβ

N
ψ(Nx).



Then, as N →∞, in mean, it is shown in FS ’18 that

I β = 0: ψN(x)→ 6
π2 ln(1− e−x )

I Ek ∼ ln k , 0 < β < 1: ψN(x)→ 1
Γ(2− β)

∫ ∞
x

u−βe−udu

I 1� Ek � ln k , β > 0: ψN(x)→ e−x

–When β ≥ 1 and ‘Ek ∼ ln k ’, it turns out the variance of ψN(x)
diverges; we exclude this case here.



Dynamics

For our evolutional models, consider the following weakly
asymmetric zero range processes on Z+.

1 2 3 k − 1 k k + 1

rate 1 rate λk

–We impose a reflecting boundary at k = 1, so that the gradient
evolution is ‘mass conservative’.



Namely, we consider generator

Lf (ξ) =
∞∑

k=1

{
λk

[
f
(
ξk ,k+1

)
− f (ξ)

]
χ{ξ(k)>0}

+
[
f
(
ξk ,k−1

)
− f (ξ)

]
χ{ξ(k)>0,k>1}

}
where

λk = e−β(Ek+1−Ek )−N−1
, ξx ,y (k) =


ξ(k)− 1 k = x
ξ(k) + 1 k = y
ξ(k) otherwise

.



Growth at (2,1) a particle jumps from site 2 to 3
1 2 3 4

In this example, a particle at site 2 jumps (with rate λ2) to site 3
corresponds to creation of a square at the corner (2,1).



Loss at (3,0) a particle jumps from site 4 to 3
1 2 3 4

Here, a particle at site 4 jumps (with rate λ4) to site 3
corresponds to annihilation of a square at the corner (3,0).



Invariant measures

Part of the reason for this choice of dynamics is that it keeps
Pβ,N invariant. But, there are other invariant measures.

Let
c0 = min

k
eβEk .

Trivially c0 = 1 when β = 0 and c0 ≥ 1 otherwise.

For fixed β and 0 ≤ c ≤ c0, we introduce the product measures

Rc,N(ξ) =
∏

k

Rβ,c,N,k (ξ(k)).



Here, the marginal Rβ,c,N,k is the Geometric distribution with
parameter

θk ,c = cθk = ce−βEk−k/N .

Clearly, Rc,N = Pβ,N when c = 1.

–These measures can be seen to be invariant since

λk = e−β(Ek+1−Ek )−N−1
=
θk+1,c

θk ,c
,

and so θ·,c is a reversible measure for the underlying
Birth-Death chain.



Order of number of particles

Recall Nβ = eEN , which is o(N) and diverges when β > 0.

When c < c0,

ERc,N

∞∑
k=1

ξ(k) = O
(

N
Nβ

)
.

–So, there are o(N) particles in the system under Rc,N when
β > 0.



Static limits under Rc,N

Proposition
Fix 0 ≤ c ≤ c0. Then, for any test function G ∈ C∞c (R+

◦ ) and
δ > 0

lim
N→∞

Rc,N

[∣∣∣∣∣Nβ

N

∞∑
k=1

G(k/N)ξ(k)−
∫ ∞

0
G(x)φc(x)dx

∣∣∣∣∣ > δ

]
= 0

(1)
where φc takes the form

(1) φc =
ce−x

1− ce−x when β = 0,

(2) φc = cx−βe−x when Ek ∼ ln k and 0 < β < 1,
(3) φc = ce−x when 1� Ek � ln k and β > 0.

–Limits for ψN in terms of
∫∞

x φc(u)du also follow.



φc= ce−x

1−ce−x φc=cx−βe−x

φc=ce−x

Figure: Examples of φc in all the three regimes. The dotted curves
represent c = c0 and solid curves are for general c’s which are strictly
less than c0.



Rescaled empirical measure

Let ξt denote the associated Markov process generated by L.
Since

λk = e−β(Ek+1−Ek )−N−1 → 1 as N →∞,

we will be interested in the process

ηt = ξN2t

–For each t , consider the corresponding rescaled empirical
measure

πN
t (dx) =

Nβ

N

∞∑
k=1

ηt (k)δk/N(dx).

–We observe ξt in diffusive scale, where time is speeded up by
N2 and space by N. The extra factor Nβ is needed to keep πN

t
nontrivial.



Initial measures

Consider a smooth initial density profile ρ0 : R+
◦ → R+ such that

ρ0 ∈ L1(R+).

Correspondingly, define a sequence of ‘local equilibrium’
measures

{
νN}

N∈N corresponding to ρ0:

1. For all N ∈ N and η ∈ Ω, νN(η) =
∏

k=1 ν
N
k (η(k)) with νN

k
Geometric distributions with parameter θN,k .

2. limN→∞
1
N
∑∞

k=1 |NβρN,k − ρ0(k/N)| = 0 where

ρN,k :=
θN,k

1− θN,k
is the mean of µN

k .

3. µN is stochastically bounded by Rc,N for some 0 ≤ c < c0.

–This last item means that ρ0 ≤ φc for some 0 ≤ c < c0.



Theorem (Case β = 0)
Suppose β = 0 and ρ0 ∈ L1(R+). Then, for any t ≥ 0, test
function G ∈ C∞c (R+

◦ ), and δ > 0,

lim
N→∞

PN

[∣∣∣〈G, πN
t 〉 −

∫ ∞
0

G(x)ρ(t , x)dx
∣∣∣ > δ

]
= 0,

where ρ(t , x) is the unique weak solution in C of the equation
∂tρ = ∂2

x
ρ

ρ+ 1
+ ∂x

ρ

ρ+ 1

ρ(0, ·) = ρ0(·),
∫ ∞

0
ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φc(·) for all t ≤ T

.



Theorem (Case Ek ∼ ln k )
Suppose Ek ∼ ln k, 0 < β < 1 and ρ0 ∈ L1(R+). Then, for any
t ≥ 0, test function G ∈ C∞c (R+

◦ ), and δ > 0,

lim
N→∞

PN

[∣∣∣〈G, πN
t 〉 −

∫ ∞
0

G(x)ρ(t , x)dx
∣∣∣ > δ

]
= 0,

where ρ(t , x) is the unique weak solution in C of the equation
∂tρ = ∂2

xρ+ ∂x

(
β + x

x
ρ

)
ρ(0, ·) = ρ0(·),

∫ ∞
0

ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φc(·) for all t ≤ T

. (2)



Theorem (Case 1� Ek � ln k )
Suppose 1� Ek � ln k, β > 0 and ρ0 ∈ L1(R+). Then, for any
t ≥ 0, test function G ∈ C∞c (R+

◦ ), and δ > 0,

lim
N→∞

PN

[∣∣∣〈G, πN
t 〉 −

∫ ∞
0

G(x)ρ(t , x)dx
∣∣∣ > δ

]
= 0,

where ρ(t , x) is the unique weak solution in C of the equation
∂tρ = ∂2

xρ+ ∂xρ

ρ(0, ·) = ρ0(·),
∫ ∞

0
ρ(t , x)dx =

∫ ∞
0

ρ0(x)dx

ρ(t , ·) ≤ φc(·) for all t ≤ T

. (3)



–Here, C is the space of functions ρ : [0,T ]× R+ 7→ R+ such
that the map t ∈ [0,T ] 7→ ρ(t , x)dx is vaguely continuous; that
is, for each G ∈ C∞c (R+

◦ ), the map

t ∈ [0,T ] 7→
∫ ∞

0
G(x)ρ(t , x)dx

is continuous.



Height functions

Since the particle density is related to the height function by

ψN(t , x) =
Nβ

N

∑
k≥xN

ηt (k),

we obtain, as a corollary, that the macroscopic limit ψ satisfies

ψ(t , x) =

∫ ∞
x

ρ(t ,u)du

and

I β = 0: ∂tψ = ∂x

(
∂xψ

1− ∂xψ

)
+

∂xψ

1− ∂xψ
;

I 0 < β < 1, Ek ∼ ln k : ∂tψ = ∂2
xψ +

β + x
x

∂xψ;

I β > 0, 1� Ek � ln k : ∂tψ = ∂2
xψ + ∂xψ.



We remark the third equation is a linearization of the first
nonlinear PDE, while the middle linear PDE represents a
‘critical’ case in which the inhomogeneity of the rates appears.

–When β > 0, the expected number

sup
aN≤k≤bN

ERc,N [ηt (k)] ∼ N−1
β → 0

as N ↑ ∞.

–When, however, β = 0, this expectation is O(1).



Contrast with Funaki-Sasada model

Funaki and Sasada [FuSa] obtained the same equation, in the
case β = 0, for a different model with a different initial condition.

I [FuSa] model: a weakly asymmetric reservoir at site 0

0 1 2 3 k − 1 k k + 1

rate 1 rate ε := e−1/N

–Evolution is not conservative. The invariant measure is P0,N
which supports an infinite number of particles. Allowed initial
densities ρ0 satisfy

∫∞
0 ρ0(u)du =∞.

–In our limits, however, ρ0 ∈ L1(R+).



Formal derivation of macroscopic equations

We have〈
G, πN

t

〉
=
〈

G, πN
0

〉
+

∫ t

0
N2L

〈
G, πN

s

〉
ds + MG

t

with

N2L
〈

G, πN
t

〉
= N−1

∞∑
k=2

∆NG (k/N) Nβχ{ηt (k)>0}

+ N−1
∞∑

k=2

λk − 1
1/N

∇µG (k/N) Nβχ{ηt (k)>0}



To capture the ‘drift’ term, recall

λk == e−β(Ek+1−Ek )−N−1
.

Note, as k/N → x that

λk − 1
1/N

→


−1 β = 0

−β + x
x

Ek ∼ ln k

−1 1� Ek � ln k

–Let now
ηl(k) =

1
2l + 1

∑
|j−k |≤l

η(j).



The system relaxes such that locally it is in an ‘equilibrium’, that
is in a window of length Nε, roughly o(1) macroscopically,

Nβχη(k)>0 ∼
Nβη

Nε(k)

1 + ηNε(k)
.

Notice that typically Nβη
Nε(k) ∼ ρ(t , x) then

Nβη
Nε(k)

1 + ηNε(k)
∼ ρ(t , x)

1 + N−1
β ρ(t , x)

I β = 0: Nβ = 1, so Nβχη(k) ∼
ρ(t , x)

1 + ρ(t , x)
I Ek ∼ ln k or 1� Ek � ln k : Nβ →∞, so Nβχη(k) ∼ ρ(t , x)



Brief sketch of proof

To make the approximations rigorous, the general idea is from
the ‘entropy’ method in Guo-Papanicolaou-Varadhan ’89.

I 1-block estimate:

lim sup
l→∞

lim sup
N→∞

sup
aN≤k≤bN

EN

∣∣∣∣∣
∫ T

0
Nβ

(
χηt (k)>0 −

ηl
t (k)

1 + ηl
t (k)

)
dt

∣∣∣∣∣ = 0.



I 2-block estimate when β = 0 and Nβ = 1.

lim sup
l→∞

lim sup
ε→0

lim sup
N→∞

sup
aN≤k≤bN

EN

∣∣∣∣∣
∫ T

0

(
ηl

t (k)

1 + ηl
t (k)

−
ηεNt (k)

1 + ηεNt (k)

)
dt

∣∣∣∣∣ = 0.



The 1-block estimate is sufficient for the cases when β 6= 0.

–One can expand

ηl(k)

1 + ηl(k)
∼ ηl(k)−

(
ηl(k)

)2
+ · · ·

and then show for instance

sup
aN≤k≤bN

NβEN(ηl
t (k)

)2 → 0

as N ↑ ∞.



Sketch of 1-block estimate

We give the main idea to estimate

Vk ,l(η) = χη(k)>0 − Ek ,l,(2l+1)ηl (k)[χη(k)>0]

where Ek ,l,j is the conditional expectation given that there are j
particle in the l-block around k .

–A separate argument will show that we can replace conditional
expectation by ηl (k)

1+ηl (k) .



By an inequality implied by the definition of relative entropy,

sup
aN≤k≤bN

EN

∣∣∣∣∣
∫ T

0
NβVk ,l(ηs)ds

∣∣∣∣∣
≤

NβH(νN ;Rc,N)

γN

+ sup
aN≤k≤bN

Nβ

γN
lnERc,N exp

{
γN

∣∣∣∣∣
∫ T

0
Vk ,l(ηs)ds

∣∣∣∣∣
}
.



We may compute that the relative entropy

H(νN ;Rc,N) = O(NN−1
β ),

Also, the second term.may be bounded by Feynman-Kac
formula in terms of

Nβ

γN
αN,l

where
αN,l = largest eigenvalue of N2L + γNVk ,l .



Through some particle number truncations, we will need to
estimate

Nβ sup
j≤Cl

sup
f

{
Ek ,l,j [Vk ,l f ]− N2

γN
Dk ,l,j(

√
f )

}
.

–Since Nβ = o(N), the Dirichlet form penalizes densities f
which are not constant. Since Vk ,l,j is mean-zero with respect
to Ek ,l,j , more or less the estimate follows.



To make this more precise, we show that the spectral gap for
the localized dynamics, where aN ≤ k ≤ bN, can be uniformly
bounded below, over N, in terms of l .
Also, we note, with respect to the canonical measure with
j ≤ Cl particles, ‖Vk ,l‖∞ = O(l).

–One can estimate the quantity in brackets by

γN−1

1− 2‖Vk ,l‖∞gap−1
l,k ,jγN−1

Ek ,l,j [Vk ,l(−L−1
k ,l )Vk ,l ]

≤
γN−1gap−1

l,k ,j‖Vk ,l‖2∞
1− 2‖Vk ,l‖∞gap−1

l,k ,jγN−1

= O(N−1),

enough to compensate for the Nβ factor out front, a source of
difficulty.



Some possible other directions

–Ensembles, as in Erlihson-Granovsky 2008, lead to other
‘zero-range’ interactions.

–Other limit theorems, fluctuations, large deviations, etc.

–We mention also that hydrodynamic limits for 3D (or 2+1)
models related to Young diagrams have been shown recently,
for instance

Borodin-Ferrari 2014,
Legras-Toninelli 2017,
Zhang 2018,
Laslier-Toninelli 2017.

–There are of course many interesting phenomena in the
higher dimensional models to pursue.
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and also the surveys

–T. Funaki: Lectures on Random Interfaces Springer Briefs in
Probability and Mathematical Statistics, 2016, Springer,
Singapore

–F. Toninelli: (2+1)-dimensional interface dynamics: Mixing
time, hydrodynamic limit and anisotropic KPZ growth, 2017,
ICM article, arXiv:1711.05571v1


