On Hydrodynamic Limits of Young Diagrams

Sunder Sethuraman
University of Arizona

ICTS: Universality in random structures
Jan. 28, 2019
-Joint with Ibrahim Fatkullin and Jianfei Xue

Outline

- Motivations
- 'Static' Limits and 'Dynamic' Model
- Main Results
- Sketch of Proof
- Some other possible directions

Motivations

In 1996, Vershik showed an interesting limit theorem for 2D
Young diagrams sampled via certain ensembles, in particular the uniform ensemble.
-Later, we will refer to this type of limit as a 'static' limit.
More recently, in 2010, Funaki and Sasada considered an associated stochastic evolution of these 2D diagrams in time, and showed a hydrodynamic limit.
-This is what we mean by a 'dynamical' limit.

In this talk, we consider the behaviors under different Young diagram ensembles and evolutions.
-These different models provide a richer setting, allowing for different scalings, and 'abstract modeling' say of 'polymer dynamics' for instance.
-In particular, the hydrodynamic limits found depend on the type of ensemble chosen. The method of proof differs from previous work.

Notation on 2D Young diagrams

Let $p=\left(p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right)$, where $p_{k} \geq p_{k+1}$, be a partition of the integer

$$
M(p)=\sum_{k=1}^{n} p_{k}
$$

For example, $p=(4,2,2,1)$ is a partition of

$$
9=4+2+2+1
$$

Let

$$
\xi(k)=\#\left\{m: p_{m}=k\right\}
$$

be the count of 'particles' or 'polymers' of length k.

- So, $\xi=(1,2,0,1,0, \ldots)$

Define the 'height' function

$$
\psi(x)=\sum_{k \geq x} \xi(k)
$$

Then, the associated 'Young diagram' is the graph of ψ.

The Young diagram corresponding to $p=(4,2,2,1)$ or $\xi=(1,2,0,1,0 \ldots)$.

The number of squares equals

$$
M(p):=\sum_{k=1}^{n} p_{k}=\sum_{k=1}^{n} k \xi(k)=\int_{0}^{\infty} \psi(x) d x
$$

Moreover, $\xi(k)=\psi(k)-\psi(k+1)$ can be viewed as negative gradient of ψ at k :

To take limits as $M \rightarrow \infty$, we rescale the diagram widths and heights, say by μ_{x} and μ_{y}, to be chosen later.

After rescaling, the area of the Young diagram is $\mu_{x} \mu_{y} M$, which we would like to be $O(1)$.

A result of Vershik '96

Let P_{M} be the uniform probability on all partitions of M,
e.g. $(4,2,2,1)$ and $(5,4)$ are equally likely with respect to $M=9$.

For any partition p, consider the rescaled shape function

$$
\psi_{M}(x ; p)=\frac{1}{\sqrt{M}} \psi(x \sqrt{M} ; p)
$$

-So, here, $\mu_{x}=\mu_{y}=M^{-1 / 2}$.

Result

As $M \rightarrow \infty, \psi_{M}$ concentrates near

$$
\psi(x)=-\frac{\sqrt{6}}{\pi} \ln \left(1-e^{-\pi x / \sqrt{6}}\right) .
$$

-That is,

$$
\lim _{M \rightarrow \infty} P_{M}\left\{\sup _{x \in[a, b]}\left|\psi_{M}(x ; p)-\psi(x)\right|>\varepsilon\right\}=0 .
$$

There are also other 'static' limits with respect to other ensembles, say, Haar statistics, and Plancherel, Ewens measures:

Erlihson-Granovsky '08,
Kerov-Vershik '77,
Yakubovich '12, etc.
-We will describe the ones introduced in Fatkullin-Slastikov '18

The uniform measure P_{M} can be thought as the canonical ensemble corresponding to the grand canonical ensemble

$$
\mathcal{P}_{\kappa}(\xi)=\frac{1}{Z_{\kappa}} e^{-\kappa M(\xi)} .
$$

-Here $\kappa>0$ is a chemical potential.

Consider the family of grand canonical ensembles in Fatkullin-Slastikov '18, which includes \mathcal{P}_{κ} :

$$
\mathcal{P}_{\beta, N}(\xi)=\frac{1}{Z_{\beta, N}} e^{-\beta \sum_{k \geq 1} \xi(k) \mathcal{E}_{k}-N^{-1} M(\xi)}
$$

Here $\beta \geq 0$ is the inverse temperature, and we have taken $\kappa=N^{-1}$ as the chemical potential, in terms of a scaling parameter N.

Observe that the grand canonical ensemble

$$
\mathcal{P}_{\beta, N}(\xi)=\frac{1}{Z_{\beta, N}} e^{-\beta \sum_{k \in \mathbb{N}} \xi(k) \mathcal{E}_{k}-N^{-1} \sum_{k \in \mathbb{N}} k \xi(k)}
$$

has a product structure:

$$
\mathcal{P}_{\beta, N}(\xi)=\prod_{k=1}^{\infty} \mathcal{P}_{\beta, N, k}(\xi(k))
$$

where $\mathcal{P}_{\beta, N, k}$ is Geometric with parameter

$$
\theta_{k}=e^{-\beta \mathcal{E}_{k}-k / N}
$$

that is, for $n \geq 0$,

$$
\mathcal{P}_{\beta, N, k}(n)=\left(1-\theta_{k}\right) \theta_{k}^{n}
$$

Each size k carries in a sense an energy \mathcal{E}_{k}.
-When $\beta>0$, if $\mathcal{E}_{k} \gg \ln k$, the measure concentrates on finitely many particles.

So, we consider \mathcal{E}_{k} in the form

$$
\mathcal{E}_{k}=u(\ln k)
$$

where $u(\cdot): \mathbb{R}^{+} \mapsto \mathbb{R}_{o}^{+}$is a function with properties:
$u(\cdot)$ is differentiable, and $u^{\prime}(\cdot)$ is bounded.
Also, $\lim _{x \rightarrow \infty} u(x)=\infty$, and $\lim _{x \rightarrow \infty} u^{\prime}(x)=0$ or 1 .
-For instance,

- $u(x) \sim x$ or
- $u(x) \sim \ln (x)$ would be fine.

These are instances in the two classes that we discuss here:

- ' $\mathcal{E}_{k} \sim \ln k$ ' denotes the case $\lim _{x \rightarrow \infty} u^{\prime}(x)=1$
- ' $1 \ll \mathcal{E}_{k} \ll \ln k$ ' stands for the case $\lim _{x \rightarrow \infty} u^{\prime}(x)=0$.
-We note the measure, in the case ' $1 \ll \mathcal{E}_{k} \ll \ln k$ ', penalizes less the number of particles with large size k, than in the case ' $\mathcal{E}_{k} \sim \ln k$ '.

'Static' limit results in FS '18

Let $N_{\beta}=e^{\beta \mathcal{E}_{k}}$.
From our assumptions,

$$
N_{\beta}=\left\{\begin{aligned}
1 & \text { when } \beta=0 \\
o(N) & \text { when } \beta>0
\end{aligned}\right.
$$

One can show that, with respect to $\mathcal{P}_{\beta, N}$, that there are an order

$$
E[M]=N^{2} N_{\beta}^{-1}
$$

number of squares under the diagram.
-We will rescale $\mu_{x}=1 / N$ and $\mu_{y}=N_{\beta} / N$ and form

$$
\psi_{N}(x):=\frac{N_{\beta}}{N} \psi(N x)
$$

Then, as $N \rightarrow \infty$, in mean, it is shown in FS '18 that

- $\beta=0: \psi_{N}(x) \rightarrow \frac{6}{\pi^{2}} \ln \left(1-e^{-x}\right)$
- $\mathcal{E}_{k} \sim \ln k, 0<\beta<1: \psi_{N}(x) \rightarrow \frac{1}{\Gamma(2-\beta)} \int_{x}^{\infty} u^{-\beta} e^{-u} d u$
- $1 \ll \mathcal{E}_{k} \ll \ln k, \beta>0: \psi_{N}(x) \rightarrow e^{-x}$
-When $\beta \geq 1$ and ' $\mathcal{E}_{k} \sim \ln k$ ', it turns out the variance of $\psi_{N}(x)$ diverges; we exclude this case here.

Dynamics

For our evolutional models, consider the following weakly asymmetric zero range processes on \mathbb{Z}^{+}.

-We impose a reflecting boundary at $k=1$, so that the gradient evolution is 'mass conservative'.

Namely, we consider generator

$$
\begin{aligned}
L f(\xi)=\sum_{k=1}^{\infty}\left\{\lambda_{k}[\right. & \left.f\left(\xi^{k, k+1}\right)-f(\xi)\right] \chi_{\{\xi(k)>0\}} \\
& \left.+\left[f\left(\xi^{k, k-1}\right)-f(\xi)\right] \chi_{\{\xi(k)>0, k>1\}}\right\}
\end{aligned}
$$

where

$$
\lambda_{k}=e^{-\beta\left(\mathcal{E}_{k+1}-\mathcal{E}_{k}\right)-N^{-1}}, \quad \xi^{x, y}(k)= \begin{cases}\xi(k)-1 & k=x \\ \xi(k)+1 & k=y \\ \xi(k) & \text { otherwise }\end{cases}
$$

Growth at $(2,1)$

a particle jumps from site 2 to 3

In this example, a particle at site 2 jumps (with rate λ_{2}) to site 3 corresponds to creation of a square at the corner $(2,1)$.

Here, a particle at site 4 jumps (with rate λ_{4}) to site 3 corresponds to annihilation of a square at the corner $(3,0)$.

Invariant measures

Part of the reason for this choice of dynamics is that it keeps $\mathcal{P}_{\beta, N}$ invariant. But, there are other invariant measures.
Let

$$
c_{0}=\min _{k} e^{\beta \varepsilon_{k}} .
$$

Trivially $c_{0}=1$ when $\beta=0$ and $c_{0} \geq 1$ otherwise.

For fixed β and $0 \leq c \leq c_{0}$, we introduce the product measures

$$
\mathcal{R}_{c, N}(\xi)=\prod_{k} \mathcal{R}_{\beta, c, N, k}(\xi(k)) .
$$

Here, the marginal $\mathcal{R}_{\beta, c, N, k}$ is the Geometric distribution with parameter

$$
\theta_{k, c}=c \theta_{k}=c e^{-\beta \mathcal{E}_{k}-k / N}
$$

Clearly, $\mathcal{R}_{c, N}=\mathcal{P}_{\beta, N}$ when $c=1$.
-These measures can be seen to be invariant since

$$
\lambda_{k}=e^{-\beta\left(\mathcal{E}_{k+1}-\mathcal{E}_{k}\right)-N^{-1}}=\frac{\theta_{k+1, c}}{\theta_{k, c}}
$$

and so $\theta_{\cdot, c}$ is a reversible measure for the underlying Birth-Death chain.

Order of number of particles

Recall $N_{\beta}=e^{\mathcal{E}_{N}}$, which is $o(N)$ and diverges when $\beta>0$.
When $c<c_{0}$,

$$
E_{\mathcal{R}_{c, N}} \sum_{k=1}^{\infty} \xi(k)=O\left(\frac{N}{N_{\beta}}\right) .
$$

-So, there are $o(N)$ particles in the system under $\mathcal{R}_{c, N}$ when $\beta>0$.

Static limits under $\mathcal{R}_{c, N}$

Proposition

Fix $0 \leq c \leq c_{0}$. Then, for any test function $G \in C_{c}^{\infty}\left(\mathbb{R}_{o}^{+}\right)$and $\delta>0$

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathcal{R}_{c, N}\left[\left|\frac{N_{\beta}}{N} \sum_{k=1}^{\infty} G(k / N) \xi(k)-\int_{0}^{\infty} G(x) \phi_{c}(x) d x\right|>\delta\right]=0 \tag{1}
\end{equation*}
$$

where ϕ_{c} takes the form
(1) $\phi_{c}=\frac{c e^{-x}}{1-c e^{-x}}$ when $\beta=0$,
(2) $\phi_{c}=c x^{-\beta} e^{-x}$ when $\mathcal{E}_{k} \sim \ln k$ and $0<\beta<1$,
(3) $\phi_{c}=c e^{-x}$ when $1 \ll \mathcal{E}_{k} \ll \ln k$ and $\beta>0$.
-Limits for ψ_{N} in terms of $\int_{x}^{\infty} \phi_{c}(u) d u$ also follow.

Figure: Examples of ϕ_{c} in all the three regimes. The dotted curves represent $c=c_{0}$ and solid curves are for general c 's which are strictly less than c_{0}.

Rescaled empirical measure

Let ξ_{t} denote the associated Markov process generated by L. Since

$$
\lambda_{k}=e^{-\beta\left(\mathcal{E}_{k+1}-\mathcal{E}_{k}\right)-N^{-1}} \rightarrow 1 \text { as } N \rightarrow \infty
$$

we will be interested in the process

$$
\eta_{t}=\xi_{N^{2} t}
$$

-For each t, consider the corresponding rescaled empirical measure

$$
\pi_{t}^{N}(d x)=\frac{N_{\beta}}{N} \sum_{k=1}^{\infty} \eta_{t}(k) \delta_{k / N}(d x)
$$

-We observe ξ_{t} in diffusive scale, where time is speeded up by N^{2} and space by N. The extra factor N_{β} is needed to keep π_{t}^{N} nontrivial.

Initial measures

Consider a smooth initial density profile $\rho_{0}: \mathbb{R}_{o}^{+} \rightarrow \mathbb{R}^{+}$such that $\rho_{0} \in L^{1}\left(\mathbb{R}^{+}\right)$.

Correspondingly, define a sequence of 'local equilibrium’ measures $\left\{\nu^{N}\right\}_{N \in \mathbb{N}}$ corresponding to ρ_{0} :

1. For all $N \in \mathbb{N}$ and $\eta \in \Omega, \nu^{N}(\eta)=\prod_{k=1} \nu_{k}^{N}(\eta(k))$ with ν_{k}^{N} Geometric distributions with parameter $\theta_{N, k}$.
2. $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{\infty}\left|N_{\beta} \rho_{N, k}-\rho_{0}(k / N)\right|=0$ where $\rho_{N, k}:=\frac{\theta_{N, k}}{1-\theta_{N, k}}$ is the mean of μ_{k}^{N}.
3. μ^{N} is stochastically bounded by $\mathcal{R}_{c, N}$ for some $0 \leq c<c_{0}$.
-This last item means that $\rho_{0} \leq \phi_{c}$ for some $0 \leq c<c_{0}$.

Theorem (Case $\beta=0$)
Suppose $\beta=0$ and $\rho_{0} \in L^{1}\left(\mathbb{R}^{+}\right)$. Then, for any $t \geq 0$, test function $G \in C_{C}^{\infty}\left(\mathbb{R}_{o}^{+}\right)$, and $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{N}\left[\left|\left\langle G, \pi_{t}^{N}\right\rangle-\int_{0}^{\infty} G(x) \rho(t, x) d x\right|>\delta\right]=0,
$$

where $\rho(t, x)$ is the unique weak solution in \mathcal{C} of the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho=\partial_{x}^{2} \frac{\rho}{\rho+1}+\partial_{x} \frac{\rho}{\varrho+1} \\
\rho(0, \cdot)=\rho_{0}(\cdot), \quad \int_{0}^{\infty} \rho(t, x) d x=\int_{0}^{\infty} \rho_{0}(x) d x \\
\rho(t, \cdot) \leq \phi_{c}(\cdot) \text { for all } t \leq T
\end{array}\right.
$$

Theorem (Case $\mathcal{E}_{k} \sim \ln k$)

Suppose $\mathcal{E}_{k} \sim \ln k, 0<\beta<1$ and $\rho_{0} \in L^{1}\left(\mathbb{R}^{+}\right)$. Then, for any $t \geq 0$, test function $G \in C_{c}^{\infty}\left(\mathbb{R}_{o}^{+}\right)$, and $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{N}\left[\left|\left\langle G, \pi_{t}^{N}\right\rangle-\int_{0}^{\infty} G(x) \rho(t, x) d x\right|>\delta\right]=0,
$$

where $\rho(t, x)$ is the unique weak solution in \mathcal{C} of the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho=\partial_{x}^{2} \rho+\partial_{x}\left(\frac{\beta+x}{x} \rho\right) \tag{2}\\
\rho(0, \cdot)=\rho_{0}(\cdot), \quad \int_{0}^{\infty} \rho(t, x) d x=\int_{0}^{\infty} \rho_{0}(x) d x \\
\rho(t, \cdot) \leq \phi_{c}(\cdot) \text { for all } t \leq T
\end{array} .\right.
$$

Theorem (Case $1 \ll \mathcal{E}_{k} \ll \ln k$)

Suppose $1 \ll \mathcal{E}_{k} \ll \ln k, \beta>0$ and $\rho_{0} \in L^{1}\left(\mathbb{R}^{+}\right)$. Then, for any $t \geq 0$, test function $G \in C_{c}^{\infty}\left(\mathbb{R}_{o}^{+}\right)$, and $\delta>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{N}\left[\left|\left\langle G, \pi_{t}^{N}\right\rangle-\int_{0}^{\infty} G(x) \rho(t, x) d x\right|>\delta\right]=0,
$$

where $\rho(t, x)$ is the unique weak solution in \mathcal{C} of the equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho=\partial_{x}^{2} \rho+\partial_{x} \rho \tag{3}\\
\rho(0, \cdot)=\rho_{0}(\cdot), \quad \int_{0}^{\infty} \rho(t, x) d x=\int_{0}^{\infty} \rho_{0}(x) d x \\
\rho(t, \cdot) \leq \phi_{c}(\cdot) \text { for all } t \leq T
\end{array}\right.
$$

-Here, \mathcal{C} is the space of functions $\rho:[0, T] \times \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$such that the map $t \in[0, T] \mapsto \rho(t, x) d x$ is vaguely continuous; that is, for each $G \in C_{c}^{\infty}\left(\mathbb{R}_{o}^{+}\right)$, the map

$$
t \in[0, T] \mapsto \int_{0}^{\infty} G(x) \rho(t, x) d x
$$

is continuous.

Height functions

Since the particle density is related to the height function by

$$
\psi_{N}(t, x)=\frac{N_{\beta}}{N} \sum_{k \geq x N} \eta_{t}(k)
$$

we obtain, as a corollary, that the macroscopic limit ψ satisfies

$$
\psi(t, x)=\int_{x}^{\infty} \rho(t, u) d u
$$

and

- $\beta=0: \partial_{t} \psi=\partial_{x}\left(\frac{\partial_{x} \psi}{1-\partial_{x} \psi}\right)+\frac{\partial_{x} \psi}{1-\partial_{x} \psi} ;$
- $0<\beta<1, \mathcal{E}_{k} \sim \ln k: \partial_{t} \psi=\partial_{x}^{2} \psi+\frac{\beta+x}{x} \partial_{x} \psi$;
- $\beta>0,1 \ll \mathcal{E}_{k} \ll \ln k: \partial_{t} \psi=\partial_{x}^{2} \psi+\partial_{x} \psi$.

We remark the third equation is a linearization of the first nonlinear PDE, while the middle linear PDE represents a 'critical' case in which the inhomogeneity of the rates appears.
-When $\beta>0$, the expected number

$$
\sup _{a N \leq k \leq b N} E_{\mathcal{R}_{c, N}}\left[\eta_{t}(k)\right] \sim N_{\beta}^{-1} \rightarrow 0
$$

as $N \uparrow \infty$.
-When, however, $\beta=0$, this expectation is $O(1)$.

Contrast with Funaki-Sasada model

Funaki and Sasada [FuSa] obtained the same equation, in the case $\beta=0$, for a different model with a different initial condition.

- [FuSa] model: a weakly asymmetric reservoir at site 0

-Evolution is not conservative. The invariant measure is $\mathcal{P}_{0, N}$ which supports an infinite number of particles. Allowed initial densities ρ_{0} satisfy $\int_{0}^{\infty} \rho_{0}(u) d u=\infty$.
-In our limits, however, $\rho_{0} \in L^{1}\left(\mathbb{R}^{+}\right)$.

Formal derivation of macroscopic equations

We have

$$
\left\langle G, \pi_{t}^{N}\right\rangle=\left\langle G, \pi_{0}^{N}\right\rangle+\int_{0}^{t} N^{2} L\left\langle G, \pi_{s}^{N}\right\rangle d s+M_{t}^{G}
$$

with

$$
\begin{aligned}
& N^{2} L\left\langle G, \pi_{t}^{N}\right\rangle= N^{-1} \\
& \sum_{k=2}^{\infty} \Delta_{N} G(k / N) N_{\beta} \chi_{\left\{\eta_{t}(k)>0\right\}} \\
&+N^{-1} \sum_{k=2}^{\infty} \frac{\lambda_{k}-1}{1 / N} \nabla_{\mu} G(k / N) N_{\beta} \chi_{\left\{\eta_{t}(k)>0\right\}}
\end{aligned}
$$

To capture the 'drift' term, recall

$$
\lambda_{k}==e^{-\beta\left(\mathcal{E}_{k+1}-\mathcal{E}_{k}\right)-N^{-1}}
$$

Note, as $k / N \rightarrow x$ that

$$
\frac{\lambda_{k}-1}{1 / N} \rightarrow \begin{cases}-1 & \beta=0 \\ -\frac{\beta+x}{x} & \mathcal{E}_{k} \sim \ln k \\ -1 & 1 \ll \mathcal{E}_{k} \ll \ln k\end{cases}
$$

-Let now

$$
\eta^{\prime}(k)=\frac{1}{2 I+1} \sum_{|j-k| \leq 1} \eta(j) .
$$

The system relaxes such that locally it is in an 'equilibrium', that is in a window of length $N \epsilon$, roughly $o(1)$ macroscopically,

$$
N_{\beta} \chi_{\eta(k)>0} \sim \frac{N_{\beta} \eta^{N \epsilon}(k)}{1+\eta^{N \epsilon}(k)}
$$

Notice that typically $N_{\beta} \eta^{N \epsilon}(k) \sim \rho(t, x)$ then

$$
\begin{gathered}
\frac{N_{\beta} \eta^{N \epsilon}(k)}{1+\eta^{N \epsilon}(k)} \sim \frac{\rho(t, x)}{1+N_{\beta}^{-1} \rho(t, x)} \\
-\beta=0: N_{\beta}=1, \text { so } N_{\beta} \chi_{\eta(k)} \sim \frac{\rho(t, x)}{1+\rho(t, x)} \\
-\mathcal{E}_{k} \sim \ln k \text { or } 1 \ll \mathcal{E}_{k} \ll \ln k: N_{\beta} \rightarrow \infty, \text { so } N_{\beta} \chi_{\eta(k)} \sim \rho(t, x)
\end{gathered}
$$

Brief sketch of proof

To make the approximations rigorous, the general idea is from the 'entropy' method in Guo-Papanicolaou-Varadhan '89.

- 1-block estimate:
lim sup lim sup

$$
I \rightarrow \infty \quad N \rightarrow \infty
$$

$$
\sup _{a N \leq k \leq b N} \mathbb{E}^{N}\left|\int_{0}^{T} N_{\beta}\left(\chi_{\eta_{t}(k)>0}-\frac{\eta_{t}^{\prime}(k)}{1+\eta_{t}^{\prime}(k)}\right) d t\right|=0 .
$$

- 2-block estimate when $\beta=0$ and $N_{\beta}=1$.

> lim sup lim sup lim sup

$$
\sup _{a N \leq k \leq b N} \mathbb{E}^{N}\left|\int_{0}^{T \rightarrow \infty}\left(\frac{\eta_{t}^{\prime}(k)}{1+\eta_{t}^{I}(k)}-\frac{\eta_{t}^{\epsilon N}(k)}{1+\eta_{t}^{\epsilon N}(k)}\right) d t\right|=0
$$

The 1-block estimate is sufficient for the cases when $\beta \neq 0$.
-One can expand

$$
\frac{\eta^{\prime}(k)}{1+\eta^{\prime}(k)} \sim \eta^{\prime}(k)-\left(\eta^{\prime}(k)\right)^{2}+\cdots
$$

and then show for instance

$$
\sup _{a N \leq k \leq b N} N_{\beta} \mathbb{E}^{N}\left(\eta_{t}^{\prime}(k)\right)^{2} \rightarrow 0
$$

as $N \uparrow \infty$.

Sketch of 1-block estimate

We give the main idea to estimate

$$
V_{k, l}(\eta)=\chi_{\eta(k)>0}-E_{k, l,(2 /+1) \eta^{\prime}(k)}\left[\chi_{\eta(k)>0}\right]
$$

where $E_{k, l, j}$ is the conditional expectation given that there are j particle in the $/$-block around k.
-A separate argument will show that we can replace conditional expectation by $\frac{\eta^{\prime}(k)}{1+\eta^{\prime}(k)}$.

By an inequality implied by the definition of relative entropy,

$$
\begin{aligned}
& \sup _{a N \leq k \leq b N} \mathbb{E}^{N}\left|\int_{0}^{T} N_{\beta} V_{k, l}\left(\eta_{s}\right) d s\right| \\
& \leq \frac{N_{\beta} H\left(\nu^{N} ; \mathcal{R}_{c, N}\right)}{\gamma N} \\
& \quad+\sup _{a N \leq k \leq b N} \frac{N_{\beta}}{\gamma N} \ln \mathbb{E}_{\mathcal{R}_{c, N}} \exp \left\{\gamma N\left|\int_{0}^{T} V_{k, l}\left(\eta_{s}\right) d s\right|\right\}
\end{aligned}
$$

We may compute that the relative entropy

$$
H\left(\nu^{N} ; \mathcal{R}_{c, N}\right)=O\left(N N_{\beta}^{-1}\right)
$$

Also, the second term.may be bounded by Feynman-Kac formula in terms of

$$
\frac{N_{\beta}}{\gamma N} \alpha_{N, I}
$$

where

$$
\alpha_{N, I}=\text { largest eigenvalue of } N^{2} L+\gamma N V_{k, l} .
$$

Through some particle number truncations, we will need to estimate

$$
N_{\beta} \sup _{j \leq C l} \sup _{f}\left\{E_{k, l, j}\left[V_{k, l} f\right]-\frac{N^{2}}{\gamma N} D_{k, l, j}(\sqrt{f})\right\}
$$

-Since $N_{\beta}=o(N)$, the Dirichlet form penalizes densities f which are not constant. Since $V_{k, l, j}$ is mean-zero with respect to $E_{k, l, j}$, more or less the estimate follows.

To make this more precise, we show that the spectral gap for the localized dynamics, where $a N \leq k \leq b N$, can be uniformly bounded below, over N, in terms of l.
Also, we note, with respect to the canonical measure with $j \leq C l$ particles, $\left\|V_{k,}\right\|_{\infty}=O(I)$.
-One can estimate the quantity in brackets by

$$
\begin{aligned}
& \frac{\gamma N^{-1}}{1-2\left\|V_{k, l}\right\|_{\infty} \operatorname{gap}_{l, k, j}^{-1} \gamma N^{-1}} E_{k, l, j}\left[V_{k, l}\left(-L_{k, l}^{-1}\right) V_{k, l}\right] \\
& \leq \frac{\gamma N^{-1} \operatorname{gap}_{l, k, j}^{-1}\left\|V_{k, l}\right\|_{\infty}^{2}}{1-2\left\|V_{k, l}\right\|_{\infty} \operatorname{gap}_{l, k, j}^{-1} \gamma N^{-1}} \\
& =O\left(N^{-1}\right)
\end{aligned}
$$

enough to compensate for the N_{β} factor out front, a source of difficulty.

Some possible other directions

-Ensembles, as in Erlihson-Granovsky 2008, lead to other 'zero-range' interactions.
-Other limit theorems, fluctuations, large deviations, etc.
-We mention also that hydrodynamic limits for 3D (or 2+1) models related to Young diagrams have been shown recently, for instance

Borodin-Ferrari 2014, Legras-Toninelli 2017,
Zhang 2018, Laslier-Toninelli 2017.
-There are of course many interesting phenomena in the higher dimensional models to pursue.

Many of the references can be found in the arXiv version
I. Fatkullin-SS-J. Xue, 2018, arXiv:1809.03592
and also the surveys
-T. Funaki: Lectures on Random Interfaces Springer Briefs in Probability and Mathematical Statistics, 2016, Springer, Singapore
-F. Toninelli: (2+1)-dimensional interface dynamics: Mixing time, hydrodynamic limit and anisotropic KPZ growth, 2017, ICM article, arXiv:1711.05571v1

