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TASEP with Step Initial Condition
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TASEP with step initial condition

e At time 0O there is one particle at every site of Z_ and the sites
of Z. are empty.
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TASEP with Step Initial Condition
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TASEP with step initial condition

e Each edge rings at rate 1, and the particle at the left of the
edge moves one step to the right.
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TASEP with Step Initial Condition

0000000
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TASEP with step initial condition

e Except when the site at the right is occupied in which case
nothing happens.
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TASEP and Last Passage Percolation

Variable of interest

e T, :=time till the n-th particle moves out of site 0.

e T, can be represented as a passage time in an oriented last
Passage percolation model with exponential passage times.
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Connection with directed last passage percolation

e S, := last passage time

from (1,1) to (n, n). Xaa
e ~:an oriented path from
(1,1) to (n, n). e Xog | Xaz | Xug

o Sp=max, Y1, X, (i)

X X X: X
Couple with TASEP so that X 21 22 32 24

is the waiting time for the j-th
particle jumping out of site j — /. Xi1 X2 | Xiz | Xia

T.< 8, ] X; ~ i.id. Exp(1)
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Asymptotics of T,

Theorem (Rost(1981))

As n — oo, 1
—E[T, 4.
nIE[ n] —

e This corresponds to the current of 1 in the system, which is
the maximum possible value of stationary current.
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Asymptotics of T,

Theorem (Rost(1981))

As n — oo, 1
—E[T, 4.
nIE[ n] —

e This corresponds to the current of 1 in the system, which is
the maximum possible value of stationary current.

Theorem (Johansson(2000))

As n — oo,
Th—4n

24/371/3
where Fry denotes the Tracy-Widom distribution.

d
= Frw,
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Transversal Fluctuations

e Let ' be the maximal path from (1,1) to (n, n).
Define the transversal fluctuation for I'" to be

Fn= sup |I'?— x|
x€[0,n]

N—

Theorem (Johansson(2000))
F, is O(n?/3+°(1) with high probability.
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Introducing Local Defects )
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TASEP with a slow bond

e Introduce a single slow .. Xua
bond.

e Bond between sites 0 and
1rings atrate 1 — ¢, all
other bonds ring at rate 1.

e Inthe DLPP Xo1 Xoo | Xao | Xoa
representation, diagonal
entries are changed to
Exponentials with smaller

Xoz | Xzz | Xas

Xip | X2 | Xiz | Xia

rate.
, d
o Identity: Exp(1 —¢) = X; independent, ~ Exp(1) for
Exp(1) + Ber(e) - Exp(1 —¢) i # j, Xij ~ Exp(1 — ¢)
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The Slow Bond Problem

e T, :=time till the n-th particle moves out of site 0.

Is the law of large numbers for T; different from that of 7,7 i.e.,

€ 727
ETn 24,

k(1 —¢):= nIer;o -

e Easy for ¢ sufficiently large.

e An affirmative answer for all e> 0, implies that for any value
of the slowness parameter, the maximal current in the
system changes, i.e., the macroscopic behaviour is
affected.
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e Janowsky and Lebowitz (1992) introduced the slow bond
model.
e Disagreement among physicists
e Mean field prediction: e = 0 (Janowsky and
Lebowitz(1994)).
e Ha, Timonem, den Nijs (2003): ¢; =~ 0.20. Based on
numerical simulation and finite size scaling.
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e Rigorous bounds
e c. < 0.49 (Janowsky and Lebowitz(1994)).
e Seppalainen (2001):

max{4, }<k(1—¢)<3+

(1-¢)+2(2-¢) 1
21 —¢)(2—¢) 1—¢ J

Related work
e Covert and Rezakhanlou (1997): Hydrodynamic limits.

e Baik and Rains(2001): Longest Increasing Subsequence
of Involutions with fixed points-non-trivial phase transition

e Georgiu, Kumar, Seppalainen (2010).

e Beffara, Sidoravicius and Vares(2010): Polynuclear growth
model with columnar defect-non-trivial phase transition.

e Costin, Lebowitz et al.(2012).



Our Results

Theorem (Basu, Sidoravicius, S. (2014))

Foreache > 0, 1
lim —ET; > 4,

n—oo N

and soe; = 0.
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Our Results

Theorem (Basu, Sidoravicius, S. (2014))

Foreache > 0, 1
lim —ET; > 4,

n—oo N

and soe; = 0.

The fluctuations of T: are order n'/? and Gaussian.
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Proof Strategy

Observation
Fix e > 0. By superadditivity, it suffices to prove that for some n,

E[T;] > 4n.

e From Tracy-Widom fluctuations, E[T,] = 4n — O(n'/3),
e ltis enough to obtain an expected improvement of Cn'/3
for some large constant C.

o Transversal fluctuations are order n?/3 so the expected
time on the diagonal is of order n'/3. Thus we get an en'/3

improvement.
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Additional for Improvements

(n,n)

Optimal Path

Almost Optimal
Alternative Path

2/3
An/

o If the path deviates from the diagonal for a long time, then
we try to get another O(en'/3) improvement by taking a
path almost as long as the longest path.
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Additional for Improvements

(n,n)

Optimal Path

Almost Optimal
Alternative Path

n2/3

o If the path deviates from the diagonal for a long time, then
we try to get another O(en'/3) improvement by taking a
path almost as long as the longest path.

e This will help if the cost of the alternative path is within
on'/3 of the optimal path for some small § < e.

Allan Sly Slow Bond



Additional for Improvements

(n,n)

Optimal Path

Almost Optimal
Alternative Path

n2/3

o If the path deviates from the diagonal for a long time, then
we try to get another O(en'/3) improvement by taking a
path almost as long as the longest path.

e This will help if the cost of the alternative path is within
on'/3 of the optimal path for some small § < e.

e ldea: Look for improvements on all scales.
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Additional for Improvements

(n,n)

Optimal Path

Almost Optimal
Alternative Path

n2/3

o If the path deviates from the diagonal for a long time, then
we try to get another O(en'/3) improvement by taking a
path almost as long as the longest path.

e This will help if the cost of the alternative path is within
6n'/3 of the optimal path for some small § < e.

e ldea: Look for improvements on all scales.

e Trick: Do reinforcement on a random line parallel to the
diagonal.
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Why was this hard to predict with simulations?

Our proof requires a rather large value of nbefore ETS > 4n.
The following theorem explains why understanding the
behaviour around 0 proved challenging.
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Why was this hard to predict with simulations?

Our proof requires a rather large value of nbefore ETS > 4n.
The following theorem explains why understanding the
behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

Forevery C > 0,ase— 0,

lim 1ET;§ — 4 = 0(%).

n—oo N
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Why was this hard to predict with simulations?

Our proof requires a rather large value of nbefore ETS > 4n.
The following theorem explains why understanding the
behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

Forevery C > 0,ase— 0,

lim 1ET;§ — 4 = 0(%).

n—oo N

Predicted to be e°/«.

Allan Sly Slow Bond



Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a n x n?/3 rectangle parallel to the diagonal, the expected
number of distinct paths through the middle third is O(1).
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Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a n x n?/3 rectangle parallel to the diagonal, the expected
number of distinct paths through the middle third is O(1).

Corollary: No non-trivial infinite bi-geodesics.
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Local Time on the diagonal

/%/4
,[2/3/( \\_f n
T

Let L, be the time the optimal geodesic spends on the
diagonal. Then EL, = O(n'/3).
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Local Time on the diagonal

n?? N\ _— \\_f "

Let L, be the time the optimal geodesic spends on the
diagonal. Then EL, = O(n'/3).
Moreover it is concentrated, for some v > 0,

P[L,n~ /3 > 1] < Cexp(—ct).
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Inductive Statement

u
ny

2/3
n;"" logn;

Let n; = (1/¢)'+/1%0. On a n; x nj2/3 log nj rectangle

B[ max T5, — Tuy > te/%n;%log®UtD ) < exp(—ct).

forj=0,...,J. with J. - cocas e — 0.
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Local time of almost geodesics

2 . : ,
Qn anjq x njﬁ log nj¢ rectangle, by induction maximal
improvement is

1
max T, — Tuy < sl €'/ 1/3|ogc(f+2)n < /10 1/3 Y
uel,veR nj
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Local time of almost geodesics

2 . : ,
Qn anjq x njﬁ log nj¢ rectangle, by induction maximal
improvement is

max T, — Tyy < Njt1 (/3 1/3|ogco+2)n < 1/10p 1/3 7
uel,veR nj

Let W, be the number of segments of length n; on the diagonal
that ~ intersects.
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Local time of almost geodesics

Qn anjq x nfﬁ log nj¢ rectangle, by induction maximal
improvement is

max Tg, — T, el €'/ 1/3|ogc(f+2)n < /10p 1/3 =Y
uel,veR v = n; /
Let W, be the number of segments of length n; on the diagonal
that ~ intersects.
For all v from L to R that are within Y; of the optimal path
W, < (njya/np)' 2 log® ;.



Space of almost geodesics

Onanjq x njzﬁ log nj 1 rectangle let A be a line parallel to the
sides in the middle third split into segments of length njz/3 log ny.
Let N be the number of segments intersected by paths from L

to A that are within Y; of the optimal path. Then

P[N > tlog® n;] < exp(—ct”).
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Thanks you for listening )
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