The Slow Bond Model with Small Perturbations

Allan Sly

Princeton University

Joint work with Sourav Sarkar (UC Berkeley) and Lingfu Zhang (Princeton)

February 25, 2019

イロン 不得 とくほ とくほとう

TASEP with step initial condition

 \bullet At time 0 there is one particle at every site of \mathbb{Z}_- and the sites of \mathbb{Z}_+ are empty.

프 🕨 🛛 프

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Except when the site at the right is occupied in which case nothing happens.

・ 同 ト ・ 三 ト ・

프 🕨 🛛 프

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the edge moves one step to the right.

Variable of interest

- $T_n :=$ time till the *n*-th particle moves out of site 0.
- *T_n* can be represented as a passage time in an oriented last Passage percolation model with exponential passage times.

Connection with directed last passage percolation

- *S_n* := last passage time from (1, 1) to (*n*, *n*).
- *γ*: an oriented path from
 (1, 1) to (*n*, *n*).

•
$$S_n = \max_{\gamma} \sum_{i=1}^n X_{\gamma(i)}$$
.

Couple with TASEP so that X_{ij} is the waiting time for the *i*-th particle jumping out of site j - i.

$$T_n \stackrel{d}{=} S_n.$$

			<i>X</i> 44
	X ₂₃	X ₃₃	X ₄₃
X ₂₁	X ₂₂	X ₃₂	X ₂₄
X ₁₁	<i>X</i> ₁₂	X ₁₃	<i>X</i> ₁₄

 $X_{ij} \sim \text{i.i.d. Exp}(1)$

くロト (過) (目) (日)

Theorem (Rost(1981))

As $n \to \infty$,

 $\frac{1}{n}\mathbb{E}[T_n]\to 4.$

• This corresponds to the current of $\frac{1}{4}$ in the system, which is the maximum possible value of stationary current.

イロト イポト イヨト イヨト

ъ

Theorem (Rost(1981))

As $n \to \infty$,

 $\frac{1}{n}\mathbb{E}[T_n]\to 4.$

• This corresponds to the current of $\frac{1}{4}$ in the system, which is the maximum possible value of stationary current.

Theorem (Johansson(2000))

As $n \to \infty$,

$$\frac{T_n-4n}{2^{4/3}n^{1/3}}\stackrel{d}{\rightarrow} F_{TW},$$

where F_{TW} denotes the Tracy-Widom distribution.

イロト イポト イヨト イヨト 一日

• Let Γ^n be the maximal path from (1, 1) to (*n*, *n*). Define the transversal fluctuation for Γ^n to be

$$F_n = \sup_{x \in [0,n]} |\Gamma_x^n - x|.$$

Theorem (Johansson(2000))

 F_n is $O(n^{2/3+o(1)})$ with high probability.

イロト イポト イヨト イヨト

Introducing Local Defects

TASEP with a slow bond

- Introduce a single slow bond.
- Bond between sites 0 and 1 rings at rate 1 - ε, all other bonds ring at rate 1.
- In the DLPP representation, diagonal entries are changed to Exponentials with smaller rate.
- Identity: $\operatorname{Exp}(1 \varepsilon) \stackrel{\mathrm{d}}{=} \operatorname{Exp}(1) + \operatorname{Ber}(\varepsilon) \cdot \operatorname{Exp}(1 \varepsilon)$

			<i>X</i> 44
	X ₂₃	X ₃₃	X ₄₃
X ₂₁	X 22	X ₃₂	X ₂₄
<i>X</i> ₁₁	<i>X</i> ₁₂	X ₁₃	<i>X</i> ₁₄

 X_{ij} independent, $\sim \operatorname{Exp}(1)$ for $i \neq j, X_{ii} \sim \operatorname{Exp}(1 - \varepsilon)$

ヘロト ヘアト ヘビト ヘビト

The Slow Bond Problem

• T_n^{ε} := time till the *n*-th particle moves out of site 0.

Question

Is the law of large numbers for T_n^{ε} different from that of T_n ? i.e.,

$$\kappa(1-\varepsilon):=\lim_{n\to\infty}\frac{\mathbb{E}T_n^{\varepsilon}}{n} \stackrel{??}{>} 4.$$

- Easy for ε sufficiently large.
- An affirmative answer for all ε> 0, implies that for any value of the slowness parameter, the maximal current in the system changes, i.e., the macroscopic behaviour is affected.

History

- Janowsky and Lebowitz (1992) introduced the slow bond model.
- Disagreement among physicists
 - Mean field prediction: ε_c = 0 (Janowsky and Lebowitz(1994)).
 - Ha, Timonem, den Nijs (2003): *ε_c* ≈ 0.20. Based on numerical simulation and finite size scaling.

Allan Sly Slow Bond

History

- Rigorous bounds
 - $\varepsilon_c < 0.49$ (Janowsky and Lebowitz(1994)).
 - Seppäläinen (2001):

$$\max\{4, \frac{(1-\varepsilon)^2 + 2(2-\varepsilon)}{2(1-\varepsilon)(2-\varepsilon)}\} \le \kappa(1-\varepsilon) \le 3 + \frac{1}{1-\varepsilon}.$$

Related work

- Covert and Rezakhanlou (1997): Hydrodynamic limits.
- Baik and Rains(2001): Longest Increasing Subsequence of Involutions with fixed points-non-trivial phase transition
- Georgiu, Kumar, Seppäläinen (2010).
- Beffara, Sidoravicius and Vares(2010): Polynuclear growth model with columnar defect-non-trivial phase transition.
- Costin, Lebowitz et al.(2012).

◆□ > ◆圖 > ◆園 > ◆園 > -

Theorem (Basu, Sidoravicius, S. (2014))

For each $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}T_n^{\varepsilon}>4,$$

and so $\epsilon_c = 0$.

Theorem (Basu, Sidoravicius, S. (2014))

For each $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}T_n^{\varepsilon}>4,$$

and so $\epsilon_c = 0$.

The fluctuations of T_n^{ε} are order $n^{1/2}$ and Gaussian.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Observation

Fix $\epsilon > 0$. By superadditivity, it suffices to prove that for some *n*,

$$\mathbb{E}[T_n^{\epsilon}] > 4n.$$

- From Tracy-Widom fluctuations, $\mathbb{E}[T_n] = 4n O(n^{1/3})$.
- It is enough to obtain an expected improvement of Cn^{1/3} for some large constant C.
- Transversal fluctuations are order $n^{2/3}$ so the expected time on the diagonal is of order $n^{1/3}$. Thus we get an $\epsilon n^{1/3}$ improvement.

イロト イポト イヨト イヨト

• If the path deviates from the diagonal for a long time, then we try to get another $O(\epsilon n^{1/3})$ improvement by taking a path almost as long as the longest path.

< ロ > < 同 > < 三 >

- If the path deviates from the diagonal for a long time, then we try to get another $O(\epsilon n^{1/3})$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1/3}$ of the optimal path for some small $\delta < \epsilon$.

- If the path deviates from the diagonal for a long time, then we try to get another $O(\epsilon n^{1/3})$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1/3}$ of the optimal path for some small $\delta < \epsilon$.
- Idea: Look for improvements on all scales.

(日)

- If the path deviates from the diagonal for a long time, then we try to get another $O(\epsilon n^{1/3})$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1/3}$ of the optimal path for some small $\delta < \epsilon$.
- Idea: Look for improvements on all scales.
- Trick: Do reinforcement on a random line parallel to the diagonal.

Our proof requires a rather large value of *n* before $\mathbb{E}T_n^{\epsilon} > 4n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

< ロ > < 同 > < 臣 > < 臣 > -

Our proof requires a rather large value of *n* before $\mathbb{E}T_n^{\epsilon} > 4n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

For every C > 0, as $\epsilon \to 0$,

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}T_n^{\varepsilon}-4=O(\epsilon^{\mathcal{C}}).$$

< □ > < □ > < □ > < □ > <

Our proof requires a rather large value of *n* before $\mathbb{E}T_n^{\epsilon} > 4n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

n

For every C > 0, as $\epsilon \to 0$,

$$\lim_{n\to\infty}\frac{1}{n}\mathbb{E}T_n^{\varepsilon}-4=O(\epsilon^{\mathcal{C}}).$$

Predicted to be $e^{-c/\epsilon}$.

< ロ > < 同 > < 三 > .

Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a $n \times n^{2/3}$ rectangle parallel to the diagonal, the expected number of distinct paths through the middle third is O(1).

э

< < >> < </p>

Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a $n \times n^{2/3}$ rectangle parallel to the diagonal, the expected number of distinct paths through the middle third is O(1).

Corollary: No non-trivial infinite bi-geodesics.

Local Time on the diagonal

Let L_n be the time the optimal geodesic spends on the diagonal. Then $\mathbb{E}L_n = O(n^{1/3})$.

< < >> < </p>

Local Time on the diagonal

Let L_n be the time the optimal geodesic spends on the diagonal. Then $\mathbb{E}L_n = O(n^{1/3})$. Moreover it is concentrated, for some $\gamma > 0$,

$$\mathbb{P}[L_n n^{-1/3} > t] \le C \exp(-ct^{\gamma}).$$

Inductive Statement

Let $n_j = (1/\epsilon)^{1+j/100}$. On a $n_j \times n_j^{2/3} \log n_j$ rectangle $\mathbb{P}[\max_{u \in L, v \in R} T_{u,v}^{\epsilon} - T_{u,v} > t\epsilon^{1/3} n_j^{1/3} \log^{C(j+1)} n_j] \le \exp(-ct^{\gamma}),$ for $j = 0, \ldots, J_{\epsilon}$ with $J_{\epsilon} \to \infty$ as $\epsilon \to 0$.

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2/3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$\max_{u \in L, v \in R} T_{u,v}^{\epsilon} - T_{u,v} \le \frac{n_{j+1}}{n_j} \epsilon^{1/3} n_j^{1/3} \log^{C(j+2)} n_j \le \epsilon^{1/10} n_{j+1}^{1/3} =: Y_j$$

A B > 4
 B > 4
 B

э

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2/3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$\max_{u \in L, v \in R} T_{u,v}^{\epsilon} - T_{u,v} \le \frac{n_{j+1}}{n_j} \epsilon^{1/3} n_j^{1/3} \log^{C(j+2)} n_j \le \epsilon^{1/10} n_{j+1}^{1/3} =: Y_j$$

Let W_{γ} be the number of segments of length n_j on the diagonal that γ intersects.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2/3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$\max_{u \in L, v \in R} T_{u,v}^{\epsilon} - T_{u,v} \le \frac{n_{j+1}}{n_j} \epsilon^{1/3} n_j^{1/3} \log^{C(j+2)} n_j \le \epsilon^{1/10} n_{j+1}^{1/3} =: Y_j$$

Let W_{γ} be the number of segments of length n_j on the diagonal that γ intersects.

For all γ from *L* to *R* that are within Y_j of the optimal path $W_{\gamma} \leq (n_{j+1}/n_j)^{1/3} \log^C n_j$.

Space of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2/3} \log n_{j+1}$ rectangle let *A* be a line parallel to the sides in the middle third split into segments of length $n_j^{2/3} \log n_j$. Let *N* be the number of segments intersected by paths from *L* to *R* that are within Y_i of the optimal path. Then

$$\mathbb{P}[N > t \log^C n_j] \le \exp(-ct^{\gamma}).$$

Thanks you for listening

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -