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TASEP with Step Initial Condition

· · · · · ·
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TASEP with step initial condition

• At time 0 there is one particle at every site of Z− and the sites
of Z+ are empty.
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TASEP with step initial condition

• Each edge rings at rate 1, and the particle at the left of the
edge moves one step to the right.
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TASEP with Step Initial Condition

· · · · · ·

−3 −2 −1 0 1 2 3 4

TASEP with step initial condition

• Except when the site at the right is occupied in which case
nothing happens.
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TASEP and Last Passage Percolation

Variable of interest
• Tn := time till the n-th particle moves out of site 0.

• Tn can be represented as a passage time in an oriented last
Passage percolation model with exponential passage times.
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Connection with directed last passage percolation

• Sn := last passage time
from (1,1) to (n,n).
• γ : an oriented path from

(1,1) to (n,n).
• Sn = maxγ

∑n
i=1 Xγ(i).

Couple with TASEP so that Xij
is the waiting time for the i-th
particle jumping out of site j − i .

Tn
d
= Sn.

X11 X12 X13 X14

X21

· · ·

X32

X33

X24

X43

X22

X23

· · · X44

Xij ∼ i.i.d. Exp(1)
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Asymptotics of Tn

Theorem (Rost(1981))
As n→∞,

1
n
E[Tn]→ 4.

• This corresponds to the current of 1
4 in the system, which is

the maximum possible value of stationary current.

Theorem (Johansson(2000))
As n→∞,

Tn − 4n
24/3n1/3

d→ FTW ,

where FTW denotes the Tracy-Widom distribution.
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Transversal Fluctuations

• Let Γn be the maximal path from (1,1) to (n,n).
Define the transversal fluctuation for Γn to be

Fn = sup
x∈[0,n]

|Γn
x − x |.

Theorem (Johansson(2000))

Fn is O(n2/3+o(1)) with high probability.
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Introducing Local Defects
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TASEP with a slow bond

• Introduce a single slow
bond.
• Bond between sites 0 and

1 rings at rate 1− ε, all
other bonds ring at rate 1.
• In the DLPP

representation, diagonal
entries are changed to
Exponentials with smaller
rate.
• Identity: Exp(1− ε)

d
=

Exp(1) +Ber(ε) ·Exp(1− ε)

X11 X12 X13 X14

X21

· · ·

X32

X33

X24

X43

X22

X23

· · · X44

Xij independent, ∼ Exp(1) for
i 6= j , Xii ∼ Exp(1− ε)
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The Slow Bond Problem

• T ε
n := time till the n-th particle moves out of site 0.

Question
Is the law of large numbers for T ε

n different from that of Tn? i.e.,

κ(1− ε) := lim
n→∞

ET ε
n

n
??
> 4.

• Easy for ε sufficiently large.
• An affirmative answer for all ε> 0, implies that for any value

of the slowness parameter, the maximal current in the
system changes, i.e., the macroscopic behaviour is
affected.
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History

• Janowsky and Lebowitz (1992) introduced the slow bond
model.
• Disagreement among physicists
• Mean field prediction: εc = 0 (Janowsky and

Lebowitz(1994)).
• Ha, Timonem, den Nijs (2003): εc ≈ 0.20. Based on

numerical simulation and finite size scaling.
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History

• Rigorous bounds
• εc < 0.49 (Janowsky and Lebowitz(1994)).
• Seppäläinen (2001):

max{4, (1− ε)2 + 2(2− ε)

2(1− ε)(2− ε)
} ≤ κ(1− ε) ≤ 3 +

1
1− ε

.

Related work
• Covert and Rezakhanlou (1997): Hydrodynamic limits.
• Baik and Rains(2001): Longest Increasing Subsequence

of Involutions with fixed points-non-trivial phase transition
• Georgiu, Kumar, Seppäläinen (2010).
• Beffara, Sidoravicius and Vares(2010): Polynuclear growth

model with columnar defect-non-trivial phase transition.
• Costin, Lebowitz et al.(2012).
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Our Results

Theorem (Basu, Sidoravicius, S. (2014))
For each ε > 0,

lim
n→∞

1
n
ET ε

n > 4,

and so εc = 0.

The fluctuations of T ε
n are order n1/2 and Gaussian.
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Proof Strategy

Observation
Fix ε > 0. By superadditivity, it suffices to prove that for some n,

E[T ε
n ] > 4n.

• From Tracy-Widom fluctuations, E[Tn] = 4n −O(n1/3).
• It is enough to obtain an expected improvement of Cn1/3

for some large constant C.
• Transversal fluctuations are order n2/3 so the expected

time on the diagonal is of order n1/3. Thus we get an εn1/3

improvement.
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Additional for Improvements

• If the path deviates from the diagonal for a long time, then
we try to get another O(εn1/3) improvement by taking a
path almost as long as the longest path.

• This will help if the cost of the alternative path is within
δn1/3 of the optimal path for some small δ < ε.
• Idea: Look for improvements on all scales.
• Trick: Do reinforcement on a random line parallel to the

diagonal.
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Why was this hard to predict with simulations?

Our proof requires a rather large value of n before ET ε
n > 4n.

The following theorem explains why understanding the
behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

For every C > 0, as ε→ 0,

lim
n→∞

1
n
ET ε

n − 4 = O(εC).

Predicted to be e−c/ε.
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Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a n × n2/3 rectangle parallel to the diagonal, the expected
number of distinct paths through the middle third is O(1).

Corollary: No non-trivial infinite bi-geodesics.
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Local Time on the diagonal

Let Ln be the time the optimal geodesic spends on the
diagonal. Then ELn = O(n1/3).

Moreover it is concentrated, for some γ > 0,

P[Lnn−1/3 > t ] ≤ C exp(−ctγ).
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Inductive Statement

Let nj = (1/ε)1+j/100. On a nj × n2/3
j log nj rectangle

P[ max
u∈L,v∈R

T ε
u,v − Tu,v > tε1/3n1/3

j logC(j+1) nj ] ≤ exp(−ctγ) ,

for j = 0, . . . , Jε with Jε →∞ as ε→ 0.
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Local time of almost geodesics

On a nj+1 × n2/3
j+1 log nj+1 rectangle, by induction maximal

improvement is

max
u∈L,v∈R

T ε
u,v − Tu,v ≤

nj+1

nj
ε1/3n1/3

j logC(j+2) nj ≤ ε1/10n1/3
j+1 =: Yj

Let Wγ be the number of segments of length nj on the diagonal
that γ intersects.
For all γ from L to R that are within Yj of the optimal path
Wγ ≤ (nj+1/nj)

1/3 logC nj .
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Space of almost geodesics

On a nj+1 × n2/3
j+1 log nj+1 rectangle let A be a line parallel to the

sides in the middle third split into segments of length n2/3
j log nj .

Let N be the number of segments intersected by paths from L
to R that are within Yj of the optimal path. Then

P[N > t logC nj ] ≤ exp(−ctγ).
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Thanks you for listening
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