The Slow Bond Model with Small Perturbations

Allan Sly

Princeton University

Joint work with
Sourav Sarkar (UC Berkeley) and Lingfu Zhang (Princeton)

February 25, 2019

TASEP with Step Initial Condition

TASEP with step initial condition

- At time 0 there is one particle at every site of \mathbb{Z}_{-}and the sites of \mathbb{Z}_{+}are empty.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step Initial Condition

TASEP with step initial condition

- Except when the site at the right is occupied in which case nothing happens.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP with Step Initial Condition

TASEP with step initial condition

- Each edge rings at rate 1 , and the particle at the left of the edge moves one step to the right.

TASEP and Last Passage Percolation

Variable of interest

- $T_{n}:=$ time till the n-th particle moves out of site 0 .
- T_{n} can be represented as a passage time in an oriented last Passage percolation model with exponential passage times.

Connection with directed last passage percolation

- $S_{n}:=$ last passage time from $(1,1)$ to (n, n).
- γ : an oriented path from $(1,1)$ to (n, n).
- $S_{n}=\max _{\gamma} \sum_{i=1}^{n} X_{\gamma(i)}$.

Couple with TASEP so that $X_{i j}$ is the waiting time for the i-th particle jumping out of site $j-i$.

$$
T_{n} \stackrel{d}{=} S_{n} .
$$

	\cdots		x_{44}
\cdots	x_{23}	x_{33}	x_{43}
x_{21}	x_{22}	x_{32}	x_{24}
x_{11}	x_{12}	x_{13}	x_{14}

$$
X_{i j} \sim \text { i.i.d. } \operatorname{Exp}(1)
$$

Asymptotics of T_{n}

Theorem (Rost(1981))

As $n \rightarrow \infty$,

$$
\frac{1}{n} \mathbb{E}\left[T_{n}\right] \rightarrow 4
$$

- This corresponds to the current of $\frac{1}{4}$ in the system, which is the maximum possible value of stationary current.

Asymptotics of T_{n}

Theorem (Rost(1981))

As $n \rightarrow \infty$,

$$
\frac{1}{n} \mathbb{E}\left[T_{n}\right] \rightarrow 4
$$

- This corresponds to the current of $\frac{1}{4}$ in the system, which is the maximum possible value of stationary current.

Theorem (Johansson(2000))

As $n \rightarrow \infty$,

$$
\frac{T_{n}-4 n}{2^{4 / 3} n^{1 / 3}} \xrightarrow{d} F_{T W}
$$

where $F_{T W}$ denotes the Tracy-Widom distribution.

Transversal Fluctuations

- Let Γ^{n} be the maximal path from $(1,1)$ to (n, n). Define the transversal fluctuation for Γ^{n} to be

$$
F_{n}=\sup _{x \in[0, n]}\left|\Gamma_{x}^{n}-x\right|
$$

Theorem (Johansson(2000))

F_{n} is $O\left(n^{2 / 3+o(1)}\right)$ with high probability.

Introducing Local Defects

- Introduce a single slow bond.
- Bond between sites 0 and 1 rings at rate $1-\varepsilon$, all other bonds ring at rate 1.
- In the DLPP
representation, diagonal entries are changed to Exponentials with smaller rate.
- Identity: $\operatorname{Exp}(1-\varepsilon) \stackrel{\text { d }}{=}$ $\operatorname{Exp}(1)+\operatorname{Ber}(\varepsilon) \cdot \operatorname{Exp}(1-\varepsilon)$

	\cdots		X_{44}
\cdots	X_{23}	X_{33}	X_{43}
X_{21}	X_{22}	X_{32}	X_{24}
X_{11}	X_{12}	X_{13}	X_{14}

$X_{i j}$ independent, $\sim \operatorname{Exp}(1)$ for $i \neq j, X_{i i} \sim \operatorname{Exp}(1-\varepsilon)$

The Slow Bond Problem

- $T_{n}^{\varepsilon}:=$ time till the n-th particle moves out of site 0 .

Question

Is the law of large numbers for T_{n}^{ε} different from that of T_{n} ? i.e.,

$$
\kappa(1-\varepsilon):=\lim _{n \rightarrow \infty} \frac{\mathbb{E} T_{n}^{\varepsilon}}{n} \stackrel{?}{?} 4 .
$$

- Easy for ε sufficiently large.
- An affirmative answer for all $\varepsilon>0$, implies that for any value of the slowness parameter, the maximal current in the system changes, i.e., the macroscopic behaviour is affected.
- Janowsky and Lebowitz (1992) introduced the slow bond model.
- Disagreement among physicists
- Mean field prediction: $\varepsilon_{c}=0$ (Janowsky and Lebowitz(1994)).
- Ha, Timonem, den Nijs (2003): $\varepsilon_{c} \approx 0.20$. Based on numerical simulation and finite size scaling.

History

- Rigorous bounds
- $\varepsilon_{C}<0.49$ (Janowsky and Lebowitz(1994)).
- Seppäläinen (2001):

$$
\max \left\{4, \frac{(1-\varepsilon)^{2}+2(2-\varepsilon)}{2(1-\varepsilon)(2-\varepsilon)}\right\} \leq \kappa(1-\varepsilon) \leq 3+\frac{1}{1-\varepsilon}
$$

Related work

- Covert and Rezakhanlou (1997): Hydrodynamic limits.
- Baik and Rains(2001): Longest Increasing Subsequence of Involutions with fixed points-non-trivial phase transition
- Georgiu, Kumar, Seppäläinen (2010).
- Beffara, Sidoravicius and Vares(2010): Polynuclear growth model with columnar defect-non-trivial phase transition.
- Costin, Lebowitz et al.(2012).

Our Results

Theorem (Basu, Sidoravicius, S. (2014))
For each $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} T_{n}^{\varepsilon}>4
$$

and so $\epsilon_{C}=0$.

Our Results

Theorem (Basu, Sidoravicius, S. (2014))
For each $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} T_{n}^{\varepsilon}>4
$$

and so $\epsilon_{C}=0$.
The fluctuations of T_{n}^{ε} are order $n^{1 / 2}$ and Gaussian.

Proof Strategy

Observation

Fix $\epsilon>0$. By superadditivity, it suffices to prove that for some n,

$$
\mathbb{E}\left[T_{n}^{\epsilon}\right]>4 n
$$

- From Tracy-Widom fluctuations, $\mathbb{E}\left[T_{n}\right]=4 n-O\left(n^{1 / 3}\right)$.
- It is enough to obtain an expected improvement of $\mathrm{Cn}^{1 / 3}$ for some large constant C.
- Transversal fluctuations are order $n^{2 / 3}$ so the expected time on the diagonal is of order $n^{1 / 3}$. Thus we get an $\epsilon n^{1 / 3}$ improvement.

Additional for Improvements

- If the path deviates from the diagonal for a long time, then we try to get another $O\left(\epsilon n^{1 / 3}\right)$ improvement by taking a path almost as long as the longest path.

Additional for Improvements

- If the path deviates from the diagonal for a long time, then we try to get another $O\left(\epsilon n^{1 / 3}\right)$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1 / 3}$ of the optimal path for some small $\delta<\epsilon$.

Additional for Improvements

- If the path deviates from the diagonal for a long time, then we try to get another $O\left(\epsilon n^{1 / 3}\right)$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1 / 3}$ of the optimal path for some small $\delta<\epsilon$.
- Idea: Look for improvements on all scales.

Additional for Improvements

- If the path deviates from the diagonal for a long time, then we try to get another $O\left(\epsilon n^{1 / 3}\right)$ improvement by taking a path almost as long as the longest path.
- This will help if the cost of the alternative path is within $\delta n^{1 / 3}$ of the optimal path for some small $\delta<\epsilon$.
- Idea: Look for improvements on all scales.
- Trick: Do reinforcement on a random line parallel to the diagonal.

Why was this hard to predict with simulations?

Our proof requires a rather large value of n before $\mathbb{E} T_{n}^{\epsilon}>4 n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

Why was this hard to predict with simulations?

Our proof requires a rather large value of n before $\mathbb{E} T_{n}^{\epsilon}>4 n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))
For every $C>0$, as $\epsilon \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} T_{n}^{\varepsilon}-4=O\left(\epsilon^{c}\right)
$$

Why was this hard to predict with simulations?

Our proof requires a rather large value of n before $\mathbb{E} T_{n}^{\epsilon}>4 n$. The following theorem explains why understanding the behaviour around 0 proved challenging.

Theorem (Sarkar, S., Zhang (2019+))

For every $C>0$, as $\epsilon \rightarrow 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E} T_{n}^{\varepsilon}-4=O\left(\epsilon^{c}\right)
$$

Predicted to be $e^{-c / \epsilon}$.

Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a $n \times n^{2 / 3}$ rectangle parallel to the diagonal, the expected number of distinct paths through the middle third is $O(1)$.

Coalescence into a few geodesics

Theorem (Basu, Hoffman, S. (2018))

On a $n \times n^{2 / 3}$ rectangle parallel to the diagonal, the expected number of distinct paths through the middle third is $O(1)$.

Corollary: No non-trivial infinite bi-geodesics.

Local Time on the diagonal

Let L_{n} be the time the optimal geodesic spends on the diagonal. Then $\mathbb{E} L_{n}=O\left(n^{1 / 3}\right)$.

Local Time on the diagonal

Let L_{n} be the time the optimal geodesic spends on the diagonal. Then $\mathbb{E} L_{n}=O\left(n^{1 / 3}\right)$.
Moreover it is concentrated, for some $\gamma>0$,

$$
\mathbb{P}\left[L_{n} n^{-1 / 3}>t\right] \leq C \exp \left(-c t^{\gamma}\right)
$$

Inductive Statement

Let $n_{j}=(1 / \epsilon)^{1+j / 100}$. On a $n_{j} \times n_{j}^{2 / 3} \log n_{j}$ rectangle

$$
\mathbb{P}\left[\max _{u \in L, v \in R} T_{u, v}^{\epsilon}-T_{u, v}>t \epsilon^{1 / 3} n_{j}^{1 / 3} \log C(j+1) n_{j}\right] \leq \exp \left(-c t^{\gamma}\right)
$$

for $j=0, \ldots, J_{\epsilon}$ with $J_{\epsilon} \rightarrow \infty$ as $\epsilon \rightarrow 0$.

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2 / 3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$
\max _{u \in L, v \in R} T_{u, v}^{\epsilon}-T_{u, v} \leq \frac{n_{j+1}}{n_{j}} \epsilon^{1 / 3} n_{j}^{1 / 3} \log { }^{c(j+2)} n_{j} \leq \epsilon^{1 / 10} n_{j+1}^{1 / 3}=: Y_{j}
$$

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2 / 3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$
\max _{u \in L, v \in R} T_{u, v}^{\epsilon}-T_{u, v} \leq \frac{n_{j+1}}{n_{j}} \epsilon^{1 / 3} n_{j}^{1 / 3} \log ^{C(j+2)} n_{j} \leq \epsilon^{1 / 10} n_{j+1}^{1 / 3}=: Y_{j}
$$

Let W_{γ} be the number of segments of length n_{j} on the diagonal that γ intersects.

Local time of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2 / 3} \log n_{j+1}$ rectangle, by induction maximal improvement is

$$
\max _{u \in L, v \in R} T_{u, v}^{\epsilon}-T_{u, v} \leq \frac{n_{j+1}}{n_{j}} \epsilon^{1 / 3} n_{j}^{1 / 3} \log c(j+2) n_{j} \leq \epsilon^{1 / 10} n_{j+1}^{1 / 3}=: Y_{j}
$$

Let W_{γ} be the number of segments of length n_{j} on the diagonal that γ intersects.
For all γ from L to R that are within Y_{j} of the optimal path $W_{\gamma} \leq\left(n_{j+1} / n_{j}\right)^{1 / 3} \log ^{C} n_{j}$.

Space of almost geodesics

On a $n_{j+1} \times n_{j+1}^{2 / 3} \log n_{j+1}$ rectangle let A be a line parallel to the sides in the middle third split into segments of length $n_{j}^{2 / 3} \log n_{j}$. Let N be the number of segments intersected by paths from L to R that are within Y_{j} of the optimal path. Then

$$
\mathbb{P}\left[N>t \log ^{C} n_{j}\right] \leq \exp \left(-c t^{\gamma}\right) .
$$

Thanks you for listening

