A PDE approach to scaling limits of random interface models on \mathbb{Z}^{d}

Rajat Subhra Hazra
Joint work with Alessandra Cipriani (TU, Delft) and Biltu Dan (ISI, Kolkata)

Indian Statistical Institute, Kolkata
4th February, 2019

Table of contents

Some examples of interface models

Scaling limit: subcritical dimensions

Scaling limits in critical and super-critical dimensions

Idea of the proof

Random interface

A random interface is a probability measure on the space of functions $\Omega=\mathbb{R}^{\mathbb{Z}^{d}}$.

To each interface we associate an energy, which is given by an Hamiltonian $H(\varphi)$.

Given $\Lambda \Subset \mathbb{Z}^{d}$ we define

$$
\mathbf{P}_{\Lambda}(d \varphi)=\frac{1}{Z_{\Lambda}} e^{-H(\varphi)} \prod_{x \in \Lambda} d \varphi_{x} \prod_{x \in \mathbb{Z}^{d} \backslash \Lambda} \delta_{\psi_{x}}\left(d \varphi_{x}\right)
$$

$\varphi_{x}=\psi_{x}$ when $x \notin \Lambda$. We shall assume $\psi_{x}=0$.

Some examples: DGFF

Discrete Gaussian free field arises out of discrete Dirichlet energy: Favours flat configurations

$$
H(\varphi)=\frac{1}{4 d} \sum_{x \in \mathbb{Z}^{d}}\left|\nabla \varphi_{x}\right|^{2}=\frac{1}{4 d} \sum_{x \sim y}\left(\varphi_{x}-\varphi_{y}\right)^{2}
$$

Here gradient: $\nabla \varphi_{x}=\left(\varphi_{x}-\varphi_{x+e_{i}}\right)_{i=1}^{d}$.

Some examples: DGFF

Discrete Gaussian free field arises out of discrete Dirichlet energy: Favours flat configurations

$$
H(\varphi)=\frac{1}{4 d} \sum_{x \in \mathbb{Z}^{d}}\left|\nabla \varphi_{x}\right|^{2}=\frac{1}{4 d} \sum_{x \sim y}\left(\varphi_{x}-\varphi_{y}\right)^{2}
$$

Here gradient: $\nabla \varphi_{x}=\left(\varphi_{x}-\varphi_{x+e_{i}}\right)_{i=1}^{d}$.

Alternative form:

$$
H(\varphi)=\sum_{x \in \mathbb{Z}^{d}} \varphi_{x}\left(-\Delta \varphi_{x}\right)=\langle\varphi,(-\Delta) \varphi\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}
$$

where

$$
\Delta \varphi_{x}=\frac{1}{2 d} \sum_{y \sim x}\left(\varphi_{y}-\varphi_{x}\right)
$$

Some examples: Membrane model

Used in modelling semiflexible membranes/polymers and takes curvatures into account. Favours flat hyper-surfaces so penalizes bending.

$$
H(\varphi)=\frac{1}{2} \sum_{x \in \mathbb{Z}^{d}}\left|\Delta \varphi_{x}\right|^{2}=\left\langle\varphi, \Delta^{2} \varphi\right\rangle_{\ell^{2}\left(Z^{d}\right)}
$$

Some examples: Mixed model

$$
\begin{aligned}
H(\varphi) & =\kappa_{1} \sum_{x \in \mathbb{Z}^{d}}\left|\nabla \varphi_{x}\right|^{2}+\kappa_{2} \sum_{x \in \mathbb{Z}^{d}}\left|\Delta \varphi_{x}\right|^{2} \\
& =\left\langle\varphi,\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right) \varphi\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)}
\end{aligned}
$$

κ_{1} is called lateral tension and κ_{2} is called the bending rigidity.
We shall also consider the case where κ_{1} and κ_{2} depend on size of Λ.

Elliptic operator

In all the examples,

$$
H(\varphi)=\left\langle\varphi, \mathcal{L}_{d} \varphi\right\rangle_{\ell^{2}\left(\mathbb{Z}^{d}\right)} .
$$

where $\mathcal{L}_{d}: \Omega \rightarrow \Omega$ is a nice operator of form

$$
\mathcal{L}_{d} \varphi_{x}=\sum_{\alpha} c_{\alpha} \varphi_{x+\alpha} .
$$

Continuum elliptic operator:

$$
\mathcal{L} f=\sum_{|\beta|,|\gamma| \leq m} a_{\beta \gamma} D^{\beta+\gamma} f, \quad a_{\beta} \in \mathbb{R}
$$

where for $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$

$$
D^{\beta}=\left(\frac{\partial}{\partial x_{1}}\right)^{\beta_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\beta_{n}}
$$

Green's function

Under conditions of positive definiteness

- $\varphi_{x}=0$, for all $x \in \mathbb{Z}^{d} \backslash \Lambda, \mathbf{P}_{\Lambda}$-a. s.

Green's function

Under conditions of positive definiteness

- $\varphi_{x}=0$, for all $x \in \mathbb{Z}^{d} \backslash \Lambda, \mathbf{P}_{\Lambda}-a$. s.
- $\left(\varphi_{x}\right)_{x \in \Lambda} \sim \mathcal{N}\left(\mathbf{0}, G_{\Lambda}\right)$ with

$$
\mathbf{E}_{\Lambda}\left[\varphi_{x} \varphi_{y}\right]=G_{\Lambda}(x, y), \quad x, y \in \Lambda
$$

Green's function

Under conditions of positive definiteness

- $\varphi_{x}=0$, for all $x \in \mathbb{Z}^{d} \backslash \Lambda, \mathbf{P}_{\Lambda}$-a. s.
- $\left(\varphi_{x}\right)_{x \in \Lambda} \sim \mathcal{N}\left(\mathbf{0}, G_{\Lambda}\right)$ with

$$
\mathbf{E}_{\Lambda}\left[\varphi_{x} \varphi_{y}\right]=G_{\Lambda}(x, y), \quad x, y \in \Lambda
$$

- For all $x \in \Lambda$

$$
\begin{aligned}
\mathcal{L}_{d} G_{\Lambda}(x, y) & =\delta_{x}(y), \quad y \in \Lambda \\
G_{\Lambda}(x, y) & =0, \quad y \notin \Lambda
\end{aligned}
$$

Lack of RW representations

DGFF
If P_{x} is the law of a $\operatorname{SRW}\left(S_{n}\right)_{n \geq 0}$ started at $x \in \mathbb{Z}^{d}$, then

$$
G_{\Lambda}(x, y):=\mathbf{E}_{x}\left[\sum_{n \geq 0} \mathbb{1}_{\left(S_{n}=y, n<H_{\wedge c}\right)}\right]
$$

where $H_{\Lambda^{c}}:=\inf \left\{n \geq 0: S_{n} \in \Lambda^{c}\right\}$.

Lack of RW representations

DGFF
If P_{x} is the law of a $\operatorname{SRW}\left(S_{n}\right)_{n \geq 0}$ started at $x \in \mathbb{Z}^{d}$, then

$$
G_{\Lambda}(x, y):=\mathbf{E}_{x}\left[\sum_{n \geq 0} \mathbb{1}_{\left(S_{n}=y, n<H_{\wedge c}\right)}\right]
$$

where $H_{\Lambda^{c}}:=\inf \left\{n \geq 0: S_{n} \in \Lambda^{c}\right\}$.

In case of Membrane or Mixed there is No random walk representation known.

Infinite Volume measure for $\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$

Does there exists a probability measure P on $\mathbb{R}^{\mathbb{Z}^{d}}$ such that $P_{\Lambda} \Rightarrow P$ as $\Lambda \uparrow \mathbb{Z}^{d}$?

κ_{1}	κ_{2}	dim	Green's function
1	0	$d \geq 3$	$G(x, y)=\Gamma_{0}(x, y)$
0	1	$d \geq 5$	$G(x, y)=\sum_{z \in \mathbb{Z}^{d}} \Gamma_{0}(x, z) \Gamma_{0}(z, y)$
$\kappa>0$	1	$d \geq 3$	$G(x, y)=\sum_{z \in \mathbb{Z}^{d}} \Gamma_{\kappa}(x, z) \Gamma_{0}(z, y)$

$$
\Gamma_{\kappa}(x, y)=\sum_{m=0}^{\infty} \frac{1}{(1+\kappa)^{m+1}} P_{x}\left(S_{m}=y\right)
$$

Scaling limit in $d=1$

In all three cases（DGFF $+M M+$ Mixed）the limit turns out to have continuous paths．Let $\Lambda_{N}=[1, N-1] \cap \mathbb{Z}$ ．Consider the linear interpolation of the interface model．
For $0 \leq t \leq 1$ ，

$$
\widehat{\varphi}_{N}(t)=\varphi_{\lfloor N t\rfloor}+(N t-\lfloor N t\rfloor)\left(\varphi_{\lfloor N t\rfloor+1}-\varphi_{\lfloor N t\rfloor}\right) .
$$

Scaling limit in $\mathrm{d}=1$

In all three cases (DGFF $+M M+$ Mixed) the limit turns out to have continuous paths. Let $\Lambda_{N}=[1, N-1] \cap \mathbb{Z}$. Consider the linear interpolation of the interface model.
For $0 \leq t \leq 1$,

$$
\widehat{\varphi}_{N}(t)=\varphi_{\lfloor N t\rfloor}+(N t-\lfloor N t\rfloor)\left(\varphi_{\lfloor N t\rfloor+1}-\varphi_{\lfloor N t\rfloor}\right) .
$$

For DGFF \& Mixed model $\left(\kappa_{1}=1, \kappa_{2}=1\right)$
Theorem ($\mathrm{d}=1$, Cipriani, Dan, H. (2018)) In $C[0,1]$,

$$
\left(N^{-1 / 2} \widehat{\varphi}_{N}(t)\right)_{t \in[0,1]} \Rightarrow\left(B_{t}^{\circ}\right)_{t \in[0,1]}
$$

where $\left(B_{t}^{\circ}\right)_{t \in[0,1]}$ is the Brownian Bridge.

Scaling limit in $\mathrm{d}=1$: Membrane

Let $X i \stackrel{i . i . d}{\sim} N(0,1)$.

$$
Y_{n}=X_{1}+\cdots+X_{n}(\text { Random walk })
$$

Scaling limit in $\mathrm{d}=1$: Membrane

Let $X i \stackrel{i . i . d}{\sim} N(0,1)$.

$$
Y_{n}=X_{1}+\cdots+X_{n}(\text { Random walk })
$$

$$
Z_{n}=Y_{1}+\cdots+Y_{n}=n X_{1}+(n-1) X_{2}+\cdots+X_{n}(\text { Integrated random walk) }
$$

Scaling limit in $\mathrm{d}=1$: Membrane

Let $X i \stackrel{\text { i.i.d }}{\sim} N(0,1)$.

$$
Y_{n}=X_{1}+\cdots+X_{n} \text { (Random walk) }
$$

$$
Z_{n}=Y_{1}+\cdots+Y_{n}=n X_{1}+(n-1) X_{2}+\cdots+X_{n} \text { (Integrated random walk) }
$$

$\left\{\varphi_{i}\right\}_{1 \leq i \leq N} \stackrel{d}{=}\left(Z_{i}\right)_{1 \leq i \leq N}$ conditionally on $\left(Y_{N}, Z_{N}\right)=(0,0)$.

Scaling limit in $\mathrm{d}=1$: Membrane

Let $X i \stackrel{i . i . d}{\sim} N(0,1)$.

$$
Y_{n}=X_{1}+\cdots+X_{n}(\text { Random walk })
$$

$Z_{n}=Y_{1}+\cdots+Y_{n}=n X_{1}+(n-1) X_{2}+\cdots+X_{n}$ (Integrated random walk)
$\left\{\varphi_{i}\right\}_{1 \leq i \leq N} \stackrel{d}{=}\left(Z_{i}\right)_{1 \leq i \leq N}$ conditionally on $\left(Y_{N}, Z_{N}\right)=(0,0)$.
Let $\left(B_{t}\right)_{t \in[0,1]}$ be the standard Brownian motion and $I_{t}=\int_{0}^{t} B_{s} d s$.
$\left(\widehat{B}_{t}, \widehat{I}_{t}\right)_{t \in[0,1]}:=\left\{\left(B_{t}, I_{t}\right)_{t \in[0,1]}\right.$ Conditioned on $\left.\left(B_{1}, I_{1}\right)=(0,0)\right\}$.

Scaling limit in $\mathrm{d}=1$: Membrane (contd.)

For $0 \leq t \leq 1$,

$$
\widehat{\varphi}_{N}(t)=\varphi_{\lfloor N t\rfloor}+(N t-\lfloor N t\rfloor)\left(\varphi_{\lfloor N t\rfloor+1}-\varphi_{\lfloor N t\rfloor}\right) .
$$

Theorem (Caravenna and Deuschel (2009))
On $C[0,1]$,

$$
\left(N^{-3 / 2} \widehat{\varphi}_{N}(t)\right)_{t \in[0,1]} \Rightarrow\left(\widehat{I}_{t}\right)_{t \in[0,1]}
$$

Scaling limit in $d=2,3$: Membrane

Membrane Model is still in subcritical regime.
In these cases it turns out the limiting process has still continuous paths.
Let $\Lambda_{N}=(-N, N) \cap \mathbb{Z}^{d}$.

$$
\Psi_{N}(t)=N^{\frac{d-4}{2}} \varphi_{N t} t \in \frac{1}{N} \mathbb{Z}^{d}
$$

Interpolate continuously on $[-1,1]^{d}$.

Theorem (Cipriani, Dan, H. (2018))
Suppose $d=2$ or 3 . In $C\left([-1,1]^{d}\right)$

$$
\Psi_{N} \Rightarrow \psi
$$

where $\Psi=\left(\Psi_{t}\right)_{t \in[-1,1]^{d}}$ is a Gaussian process with continuous paths and

$$
\mathrm{E}\left[\Psi_{t} \Psi_{s}\right]=G_{D}(t, s)
$$

and G_{D} is the Green's function on $D=[-1,1]^{d}$ satisfying the following Dirichlet problem:

$$
\begin{aligned}
\Delta_{c}^{2} G_{D}(x, y) & =\delta_{x}(y), \quad y \in D \\
G_{D}(x, y) & =0, \quad y \in \partial D \\
\mathbf{D} G_{D}(x, y) & =0, \quad y \in \partial D
\end{aligned}
$$

Consequences

- A consequence of the proof is that the process Ψ is almost surely Hölder continuous with exponent η, for every $\eta \in(0,1)$ resp. $\eta \in(0,1 / 2)$ in $d=2$ resp. $d=3$.
- One can get the extremes in $d=2,3$,

$$
N^{\frac{d-4}{2}} \max _{x \in(-N, N)^{d}} \varphi_{x} \xrightarrow{d} \sup _{x \in[-1,1]} \psi_{x}
$$

- The extremes of Membrane in \mathbb{Z}^{d} for $d \geq 5$ was resolved in Chiarini, Cipriani, Hazra (2017). Recentered tightness in $d=4$ was derived in the Thesis of Roy (2016).
- OPEN: Maxima and point process behaviour of membrane in $d=4$ should correspond to "log-correlated" models.

Brief idea of the proof

Finite dimensional convergence follows from Green's function convergence.

Brief idea of the proof

Finite dimensional convergence follows from Green's function convergence.

Checking Kolmogorov criteria for tightness:

$$
\mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}(s)\right|^{2}\right] \leq C\|t-s\|^{1+b}
$$

Brief idea of the proof

Finite dimensional convergence follows from Green's function convergence.

Checking Kolmogorov criteria for tightness:

$$
\mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}(s)\right|^{2}\right] \leq C\|t-s\|^{1+b}
$$

If t and s are neighbours then we use some gradient bounds by Müller and Schweiger (2017).

Brief idea of the proof

$\mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}\left(t+e_{1}\right)\right|^{2}\right]$

Brief idea of the proof

$$
\begin{aligned}
& \mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}\left(t+e_{1}\right)\right|^{2}\right] \\
& =G_{N}(t, t)+G_{N}\left(t+e_{1}, t+e_{1}\right)-2 G_{N}\left(t, t+e_{1}\right)
\end{aligned}
$$

Brief idea of the proof

$$
\begin{aligned}
& \mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}\left(t+e_{1}\right)\right|^{2}\right] \\
& =G_{N}(t, t)+G_{N}\left(t+e_{1}, t+e_{1}\right)-2 G_{N}\left(t, t+e_{1}\right) \\
& =\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t\right)-\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t+e_{1}\right)
\end{aligned}
$$

Brief idea of the proof

$$
\begin{aligned}
& \mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}\left(t+e_{1}\right)\right|^{2}\right] \\
& =G_{N}(t, t)+G_{N}\left(t+e_{1}, t+e_{1}\right)-2 G_{N}\left(t, t+e_{1}\right) \\
& =\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t\right)-\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t+e_{1}\right) \\
& =-\nabla_{-e_{1}}^{2} \nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t\right)
\end{aligned}
$$

Brief idea of the proof

$$
\begin{aligned}
& \mathbf{E}\left[\left|\Psi_{N}(t)-\Psi_{N}\left(t+e_{1}\right)\right|^{2}\right] \\
& =G_{N}(t, t)+G_{N}\left(t+e_{1}, t+e_{1}\right)-2 G_{N}\left(t, t+e_{1}\right) \\
& =\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t\right)-\nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t+e_{1}\right) \\
& =-\nabla_{-e_{1}}^{2} \nabla_{-e_{1}}^{1} G_{N}\left(t+e_{1}, t\right) \leq \begin{cases}C \log N & \text { if } d=2 \\
C & \text { if } d=3\end{cases}
\end{aligned}
$$

Scaling limit in critical or super critical dimension

We specialise to the case when $\left(\varphi_{x}\right)_{x \in \mathbb{Z}^{d}}$ is the Membrane model.
Let D be a bounded domain with smooth boundary.

$$
D_{h}=\bar{D} \cap h \mathbb{Z}^{d} \text { with } h=\frac{1}{N}
$$

Consider

$$
R_{h}=\left\{x \in D_{h}: N_{2}(x) \subset D_{h}\right\}
$$

$N_{2}(x)=$ neighbours at distance 2 from x.
Consider

$$
\Lambda_{N}=N R_{h} \subset \mathbb{Z}^{d} \text { the blow up of } R_{h}
$$

$$
R_{h}=\left\{x \in D_{h}: N_{2}(x) \subset D_{h}\right\},
$$

Let $\left(\varphi_{x}\right)$ be the $M M$ with zero boundary conditions on Λ_{N}. Consider $f \in C_{c}^{\infty}(D)$

$$
\left(\Psi_{h}, f\right):=h^{\frac{d+4}{2}} \sum_{x \in R_{h}} \varphi_{x / h} f(x)
$$

Where does ψ_{h} converge to?

Facts

Fact

There exist eigenfunctions u_{1}, u_{2}, \cdots of Δ_{c}^{m} with corresponding eigenvalues $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ such that

1. $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis for $L^{2}(D)$

Facts

Fact

There exist eigenfunctions u_{1}, u_{2}, \cdots of Δ_{c}^{m} with corresponding eigenvalues $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ such that

1. $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis for $L^{2}(D)$
2. For each $j \in \mathbb{N}$ one has $u_{j} \in C^{\infty}(D)$.

Facts

Fact

There exist eigenfunctions u_{1}, u_{2}, \cdots of Δ_{c}^{m} with corresponding eigenvalues $0<\lambda_{1} \leq \lambda_{2} \leq \cdots \rightarrow \infty$ such that

1. $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis for $L^{2}(D)$
2. For each $j \in \mathbb{N}$ one has $u_{j} \in C^{\infty}(D)$. (elliptic regularity)
3. $\lambda_{j} \sim c j^{2 m / d}$ (Weyl's asymptotics, Beals (1967)).

Let $f \in C_{c}^{\infty}(D)$, define

$$
\begin{gathered}
\|f\|_{s}^{2}=\sum_{j \geq 1} \frac{1}{\lambda_{j}^{s / 2}}\left\langle f, u_{j}\right\rangle_{L^{2}}^{2} . \\
\mathcal{H}_{0}^{s}={\overline{C_{c}^{\infty}(D)}}^{\|\cdot\|_{s}} .
\end{gathered}
$$

Let $f \in C_{c}^{\infty}(D)$, define

$$
\begin{gathered}
\|f\|_{s}^{2}=\sum_{j \geq 1} \frac{1}{\lambda_{j}^{s / 2}}\left\langle f, u_{j}\right\rangle_{L^{2}}^{2} . \\
\mathcal{H}_{0}^{s}={\overline{C_{c}^{\infty}(D)}}^{\|\cdot\|_{s}} .
\end{gathered}
$$

Random series: Let λ_{j} be the eigenvalues of Δ_{c}^{m} and u_{j} be the corresponding eigenfunctions. Define

$$
\Psi_{D}=\sum_{j \geq 1} \frac{X_{j} u_{j}}{\sqrt{\lambda_{j}}}, \quad X_{j} \stackrel{i i d}{\sim} N(0,1)
$$

Let $f \in C_{c}^{\infty}(D)$, define

$$
\begin{gathered}
\|f\|_{s}^{2}=\sum_{j \geq 1} \frac{1}{\lambda_{j}^{s / 2}}\left\langle f, u_{j}\right\rangle_{L^{2}}^{2} . \\
\mathcal{H}_{0}^{s}={\overline{C_{c}^{\infty}(D)}}^{\|\cdot\|_{s}} .
\end{gathered}
$$

Random series: Let λ_{j} be the eigenvalues of Δ_{c}^{m} and u_{j} be the corresponding eigenfunctions. Define

$$
\Psi_{D}=\sum_{j \geq 1} \frac{X_{j} u_{j}}{\sqrt{\lambda_{j}}}, \quad X_{j} \stackrel{i i d}{\sim} N(0,1)
$$

Theorem (Cipriani, Dan, H. (2018))
For $m=1,2$ and $s>\frac{d-2 m}{2}, \Psi_{D}$ exists in

$$
\mathcal{H}_{0}^{-s}:=\mathcal{H}_{0}^{s}(D)^{*}
$$

Scaling limit: Main result

Consider

$$
\Lambda_{N}=N R_{h} \subset \mathbb{Z}^{d} \text { the blow up of } R_{h}
$$

For $f \in \mathcal{H}_{0}^{s}(D)$ define.

$$
\left(\Psi_{h}, f\right):=h^{\frac{d+4}{2}} \sum_{x \in R_{h}} \varphi_{x / h} f(x)
$$

Theorem (Cipriani, Dan, H. (2018))
Suppose $d \geq 4$, then Ψ_{h} converges in distribution to Ψ_{D} as $h \rightarrow 0$ in the strong topology of $\mathcal{H}^{-s}(D), s>s_{d}$ where

$$
s_{d}:=\frac{d}{2}+2\left(\left\lceil\frac{1}{4}\left(\left\lfloor\frac{d}{2}\right\rfloor+1\right)\right\rceil+\left\lceil\frac{1}{4}\left(\left\lfloor\frac{d}{2}\right\rfloor+6\right)\right\rceil-1\right) .
$$

Extensions to $\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$

Consider
$\Lambda_{N}=N R_{h} \subset \mathbb{Z}^{d}$ the blow up of R_{h}
For $f \in \mathcal{H}_{0}^{s}(D)$ define.

$$
\left(\Psi_{h}, f\right):=h^{\alpha} \sum_{x \in R_{h}} \varphi_{x / h} f(x)
$$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	GFF	$d \geq 2$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	GFF	$d \geq 2$
0	1	$h^{-\frac{d+4}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 4$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	GFF	$d \geq 2$
0	1	$h^{-\frac{d+4}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 4$
1	1	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	GFF	$d \geq 2$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	GFF	$d \geq 2$
0	1	$h^{-\frac{d+4}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 4$
1	1	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	GFF	$d \geq 2$
1	$\kappa_{2} \gg N^{2}$	$h^{-\frac{(d-\delta)}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 2$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	dim
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	$G F F$	$d \geq 2$
0	1	$h^{-\frac{d+4}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 4$
1	1	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	$G F F$	$d \geq 2$
1	$\kappa_{2} \gg N^{2}$	$h^{-\frac{(d-\delta)}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 2$
1	$\kappa_{2} \ll N^{\frac{1}{2}}$	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	$G F F$	$d \geq 2$

$\mathcal{L}_{d}=\left(\kappa_{1}(-\Delta)+\kappa_{2} \Delta^{2}\right)$ [Cipriani, Dan, H. (2018, 2019+)]

κ_{1}	κ_{2}	scaling (α)	$\mathcal{H}^{-s}, s>s_{d}$	Limit	$d i m$
1	0	$h^{-\frac{d+2}{2}}$	$\frac{3}{2}$	$G F F$	$d \geq 2$
0	1	$h^{-\frac{d+4}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 4$
1	1	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	$G F F$	$d \geq 2$
1	$\kappa_{2} \gg N^{2}$	$h^{-\frac{(d-\delta)}{2}}$	$s_{d}^{M M}$	$M M$	$d \geq 2$
1	$\kappa_{2} \ll N^{\frac{1}{2}}$	$h^{-\frac{d+2}{2}}$	$\frac{d}{2}+\left\lfloor\frac{d}{2}\right\rfloor+\frac{3}{2}$	$G F F$	$d \geq 2$
1	$\kappa_{2} \sim N^{2}$	$h^{-\frac{d+2}{2}}$	$s_{d}^{M M}$	$\left(\Delta+\Delta^{2}\right)$	$d \geq 2$

$$
\delta=\frac{\log \kappa}{\log N}+d-4
$$

Idea of proof (Membrane Case)

- First we prove: $\left(\Psi_{h}, f\right) \Rightarrow\left(\Psi_{D}, f\right)$ for all $f \in C_{c}^{\infty}(D)$

Idea of proof (Membrane Case)

- First we prove: $\left(\Psi_{h}, f\right) \Rightarrow\left(\Psi_{D}, f\right)$ for all $f \in C_{c}^{\infty}(D)$
- $\Delta_{h} f(x):=\frac{1}{h^{2}} \sum_{i=1}^{d}\left(f\left(x+h e_{i}\right)+f\left(x-h e_{i}\right)-2 f(x)\right)$

Idea of proof (Membrane Case)

- First we prove: $\left(\Psi_{h}, f\right) \Rightarrow\left(\Psi_{D}, f\right)$ for all $f \in C_{c}^{\infty}(D)$
- $\Delta_{h} f(x):=\frac{1}{h^{2}} \sum_{i=1}^{d}\left(f\left(x+h e_{i}\right)+f\left(x-h e_{i}\right)-2 f(x)\right)$
- For all $x \in R_{h}:=\frac{1}{N} \Lambda_{N}$

$$
\begin{aligned}
\Delta_{h}^{2} G_{h}(x, y) & =\frac{4 d^{2}}{h^{4}} \delta_{x}(y), y \in R_{h} \\
G_{h}(x, y) & =0 \quad y \notin R_{h} .
\end{aligned}
$$

Idea of proof

$$
\begin{gathered}
\left(\Psi_{h}, f\right):=\sum_{x \in R_{h}} h^{\frac{d+4}{2}} \varphi_{x / h} f(x) \\
\operatorname{var}\left(\left(\Psi_{h}, f\right)\right)=\sum_{x \in R_{h}} h^{d} \underbrace{\sum_{y \in R_{h}} h^{4} G_{h}(x, y) f(y)}_{H_{h}(x)} f(x) \\
=\sum_{x \in R_{h}} h^{d} H_{h}(x) f(x)
\end{gathered}
$$

Idea of proof

- Discrete Dirichlet problem:

$$
\begin{aligned}
\Delta_{h}^{2} H_{h}(x) & =f(x), \quad x \in R_{h} \\
H_{h}(x) & =0, \quad x \notin R_{h} .
\end{aligned}
$$

Idea of proof

- Discrete Dirichlet problem:

$$
\begin{aligned}
\Delta_{h}^{2} H_{h}(x) & =f(x), \quad x \in R_{h} \\
H_{h}(x) & =0, \quad x \notin R_{h} .
\end{aligned}
$$

- Continuum Dirichlet problem

$$
\begin{aligned}
\Delta_{c}^{2} u(x) & =f(x), x \in D \\
u & =0, \\
\frac{\partial u}{\partial x_{i}} & =0 \text { on } \partial D .
\end{aligned}
$$

Idea of proof

- Discrete Dirichlet problem:

$$
\begin{aligned}
\Delta_{h}^{2} H_{h}(x) & =f(x), \quad x \in R_{h} \\
H_{h}(x) & =0, \quad x \notin R_{h} .
\end{aligned}
$$

- Continuum Dirichlet problem

$$
\begin{aligned}
\Delta_{c}^{2} u(x) & =f(x), x \in D \\
u & =0, \\
\frac{\partial u}{\partial x_{i}} & =0 \text { on } \partial D .
\end{aligned}
$$

- Difference between continuum and discrete Dirichlet problem solutions: $e_{h}(x):=u(x)-H_{h}(x)$ for $x \in D_{h}$

Idea of proof

- Discrete Dirichlet problem:

$$
\begin{aligned}
\Delta_{h}^{2} H_{h}(x) & =f(x), \quad x \in R_{h} \\
H_{h}(x) & =0, \quad x \notin R_{h} .
\end{aligned}
$$

- Continuum Dirichlet problem

$$
\begin{aligned}
\Delta_{c}^{2} u(x) & =f(x), x \in D \\
u & =0, \\
\frac{\partial u}{\partial x_{i}} & =0 \text { on } \partial D .
\end{aligned}
$$

- Difference between continuum and discrete Dirichlet problem solutions: $e_{h}(x):=u(x)-H_{h}(x)$ for $x \in D_{h}$

Idea of proof

- Using an extension of result by V.Thomée(1964)

$$
\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{\frac{1}{2}} .
$$

Idea of proof

- Using an extension of result by V.Thomée(1964)

$$
\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{\frac{1}{2}} .
$$

Idea of proof

- Using an extension of result by V.Thomée(1964)

$$
\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{\frac{1}{2}}
$$

$$
\operatorname{var}\left(\left(\Psi_{h}, f\right)\right) \rightarrow_{h \rightarrow 0} \int_{D} u(x) f(x) \mathrm{d} x
$$

Idea of proof

- Using an extension of result by V.Thomée(1964)

$$
\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{\frac{1}{2}}
$$

$$
\begin{gathered}
\operatorname{var}\left(\left(\Psi_{h}, f\right)\right) \rightarrow_{h \rightarrow 0} \int_{D} u(x) f(x) \mathrm{d} x \\
u(x)=\int_{D} G_{D}(x, y) f(y) \mathrm{d} y
\end{gathered}
$$

Idea of proof

- Using an extension of result by V.Thomée(1964)

$$
\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{\frac{1}{2}}
$$

$$
\begin{gathered}
\operatorname{var}\left(\left(\Psi_{h}, f\right)\right) \rightarrow_{h \rightarrow 0} \int_{D} u(x) f(x) \mathrm{d} x \\
u(x)=\int_{D} G_{D}(x, y) f(y) \mathrm{d} y \\
\operatorname{var}\left[\left(\Psi_{D}, f\right)\right]=\int_{D} \int_{D} G_{D}(x, y) f(x) f(y) .
\end{gathered}
$$

$\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{1 / 2}$

- The operator Δ_{h}^{2} is consistent with the operator Δ_{c}^{2} : $u \in C^{5}(W)$ then

$$
\Delta_{h}^{2} u(x)=\Delta_{c}^{2} u(x)+h^{-4} \mathcal{R}_{5}(x)
$$

where $\left|\mathcal{R}_{5}(x)\right| \leq C M_{5} h^{5}$.
$\left\|e_{h}\right\|_{L^{2}\left(R_{h}\right)} \leq C h^{1 / 2}$

- The operator Δ_{h}^{2} is consistent with the operator Δ_{c}^{2} : $u \in C^{5}(W)$ then

$$
\Delta_{h}^{2} u(x)=\Delta_{c}^{2} u(x)+h^{-4} \mathcal{R}_{5}(x)
$$

where $\left|\mathcal{R}_{5}(x)\right| \leq C M_{5} h^{5}$.

- There are constants $C>0$ independent of f and h such that

$$
\|f\|_{L^{2}\left(R_{h}\right)} \leq C\|f\|_{h, 2}:=\left(\sum_{|\beta| \leq 2}\left\|D^{\beta} f\right\|_{L^{2}\left(R_{h}\right)}^{2}\right)^{1 / 2}
$$

for any grid function f vanishing outside R_{h}.

Splitting of domain to define the Truncated operator

Truncated operator

$$
\Delta_{h, 2}^{2} f(x)= \begin{cases}\Delta_{h}^{2} f(x) & x \in R_{h}^{*} \\ h^{2} \Delta_{h}^{2} f(x) & x \in B_{h}^{*} \\ 0 & x \notin R_{h} .\end{cases}
$$

Truncated operator

$$
\Delta_{h, 2}^{2} f(x)= \begin{cases}\Delta_{h}^{2} f(x) & x \in R_{h}^{*} \\ h^{2} \Delta_{h}^{2} f(x) & x \in B_{h}^{*} \\ 0 & x \notin R_{h}\end{cases}
$$

There exists a constant $C>0$ such that for all grid functions f vanishing outside R_{h}

$$
\|f\|_{h, 2} \leq C\left\|\Delta_{h, 2} f\right\|_{L^{2}\left(R_{h}\right)}
$$

where C is independent of h as well.

Extensions to boundary

Works for domains with UEBC

Image: Bramson et al. (2012)

Final Remarks

- The method for getting the error in Membrane needs a change in mixed model. For κ_{2} depending on N the inequalities come with various factors of N.
- Question: The level lines of mixed model converge to $S L E_{4}$?
- The case of $\kappa_{2} \ll N^{1 / 2}$ is expected to be $\kappa_{2} \ll N^{2}$.
- The Green's function asymptotics is not known for Membrane model in $d=4$ and also

$$
G_{\mathbb{Z}^{4} \backslash A}(0,0)<\infty .
$$

where A is a finite set ?

- On-going works: Pinned membrane in $d=4$, scaling limit of integer GFF.

