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The nonbacktracking matrix



Nonbacktracking matrix

Let H be a matrix in Mn(C).

Consider the matrix B in Mn2(C) with entries

Bef = Hab1(y = a)1(x 6= b),

where e = (x, y) and f = (a, b).

e f

x y = a b 6= x

Beware that if H is Hermitian, B is not ! (not even normal).

Hashimoto (1989).



Nonbacktracking matrix on a graph

Variant: H is a matrix in Mn(C) whose non-zeros entries (x, y)

are edges of an undirected graph G = (V,E) with vertices

V = {1, · · · , n} and edges E ⊂ {{x, y} : x, y ∈ V }.

Then, the set of oriented edges of G is

~E = {(x, y) : {x, y} ∈ E}

De�ne the matrix B̃ which acts on ~E and with entries

B̃ef = Hab1(y = a)1(x 6= b),

where e = (x, y) and f = (a, b) in ~E.

The two de�nitions of B coincides: F = span(δ(x,y) : {x, y} /∈ E)

is invariant by B and B∗ and B|F = 0, B|F⊥ = B̃.



Nonbacktracking matrix and geodesics

For any k ∈ N,

Bk
ef =

∑
γ

k∏
t=1

Hγtγt+1

where the sum is over nonbacktracking paths from e to f of

length k + 1, i.e. paths (γ0, γ1, . . . , γk+1) such that (γ0, γ1) = e,

(γk, γk+1) = f and γt−1 6= γt+1. This is a discrete geodesic.

On a tree, nonbacktracking paths are shortest paths.



Nonbacktracking spectral identities

Despite its non-normality, due to its strong geometric �avour,

nonbacktracking matrices are often easier to study.

There exists a familly of identities between eigenvalues and

eigenvectors of a matrix and eigenvalues and eigenvectors of

nonbacktracking matrices.

It allows to study the spectrum of matrix through its

nonbactracking spectrum.

We will follow this strategy for computing largest eigenvalues.



Hashimoto-Ihara-Bass identity

Assume that A ∈Mn(C) is the adjacency matrix of a graph

G = (V,E).

Let Q be the diagonal matrix : Qxx = deg(x)− 1. We have

det(zI ~E −B) = (z2 − 1)|E|−|V | det(z2IV −Az +Q).

If G is a d-regular graph, that is for all x ∈ V , deg(x) = d, then

Q = (d− 1)IV and

σ(B) = {±1} ∪
{
µ : µ2 − λµ+ (d− 1) = 0 avec λ ∈ σ(A)

}
.



From nonbacktracking to classical spectrum

Lemma

Let H be Hermitian with nonbacktracking matrix B and let

µ ∈ C, µ > |Hxy| for all x, y. De�ne Hµ and Dµ diagonal

(Hµ)xy =
Hxy

1− µ−2|Hxy|2
, (Dµ)xx = µ+

1

µ

∑
y

|Hxy|2

1− µ−2|Hxy|2
.

Then µ ∈ σ(B) if and only if 0 ∈ σ(Hµ −Dµ).

There is also a determinantal identity which extends the

Hashimoto-Ihara-Bass identity.



From nonbacktracking to classical spectrum

Let v ∈ Cn2
. Introduce the divergence vector u ∈ Cn,

ux =
∑
y

Hxyvxy.

Assume that Bv = µv then

µvyx =
∑
y′ 6=y

Hxy′vxy′ = ux −Hxyvxy.

Switching x and y,

µvxy = uy − H̄xyvyx.

Hence µ2vxy = µuy − H̄xyux + |Hxy|2vxy and (as µ 6= |Hxy|)

vxy =
µuy − H̄xyux
µ2 − |Hxy|2

.



From nonbacktracking to classical spectrum

vxy =
µuy − H̄xyux
µ2 − |Hxy|2

.

We have u 6= 0 i� v 6= 0.

Writing the eigenvalue equation Bv = µv in terms of u, we

arrive at . . .

(Hµ −Dµ)u = 0.

with

(Hµ)xy =
Hxy

1− µ−2|Hxy|2
(Dµ)xx = µ+

1

µ

∑
y

|Hxy|2

1− µ−2|Hxy|2
.

As requested.



From classical to nonbacktracking spectrum

Let H be Hermitian with nonbacktracking matrix B and let

µ ∈ C, µ > |Hxy| for all x, y. De�ne Hµ and Dµ diagonal

(Hµ)xy =
Hxy

1− µ−2|Hxy|2
, (Dµ)xx = µ+

1

µ

∑
y

|Hxy|2

1− µ−2|Hxy|2
.

Then µ ∈ σ(B) if and only if 0 ∈ σ(Hµ −Dµ).

It is possible to invert the statement and obtain a claim like:

Let H ∈Mn(C) and λ ∈ R\S, there exists Ĥλ with associated

nonbacktracking matrix B̂λ such that µ ∈ σ(H) if and only if

1 ∈ σ(B̂λ).

We will see an explicit form of such statement later on.



A first application

For A ∈Mn(C), the spectral radius is

ρ(A) = max{|µ| : µ ∈ σ(A)}.

The operator norm is

‖A‖ = ‖A‖2→2 = sup
f 6=0

‖Af‖2
‖f‖2

,

and

‖A‖2→∞ = max
x

√∑
y

|Axy|2 , ‖A‖1→∞ = max
x,y
|Axy| .

Lemma

If H is Hermitian with non-backtracking matrix B, then, with

f(µ) = µ+ 1/µ for µ > 1 and f(µ) = 2 for µ 6 1,

‖H‖ 6 .
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ρ(B)
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+ 3‖H‖1→∞.



A first application

For A ∈Mn(C), the spectral radius is

ρ(A) = max{|µ| : µ ∈ σ(A)}.

The operator norm is

‖A‖ = ‖A‖2→2 = sup
f 6=0

‖Af‖2
‖f‖2

,

and

‖A‖2→∞ = max
x

√∑
y

|Axy|2 , ‖A‖1→∞ = max
x,y
|Axy| .

Lemma

If H is Hermitian with non-backtracking matrix B, then, with

f(µ) = µ+ 1/µ for µ > 1 and f(µ) = 2 for µ 6 1,

‖H‖ 6 2‖H‖2→∞ +
(ρ(B)− ‖H‖2→∞)2

+

‖H‖2→∞
+ 3‖H‖1→∞.



A first application

Assume ‖H‖2→∞ = 1. We set δ = max |Hxy| = ‖H‖1→∞ and

µ0 = max (1 + δ, ρ(B)).

Recall

(Hµ)xy =
Hxy

1− µ−2|Hxy|2
, (Dµ)xx = µ+

1

µ

∑
y

|Hxy|2

1− µ−2|Hxy|2
.

From the lemma: we have det(Hµ −Dµ) 6= 0 for all µ ∈ (µ0,∞).

Since Hµ −Dµ = I +O(µ−1) as µ→∞,

Hµ0 −Dµ0 � 0.



A first application

Recall, µ0 = max (1 + δ, ρ(B)).

From the formulas of Hµ and Dµ, we �nd, for µ > µ0,

|(Hµ)xy −Hxy| =
∣∣∣∣ Hxy

1− µ−2|Hxy|2
−Hxy

∣∣∣∣ =
|Hxy|3

µ2 − |Hxy|2
6 δ|Hxy|2.

(Dµ)xx 6

(
µ+

1

µ

)
+ δ.

Recall Hµ0 −Dµ0 � 0 and
∑

y |Hxy|2 6 1. From Gershgorin

circle theorem, we deduce that

H �
(
µ0 +

1

µ0

)
+ 2δ.

The conclusion λ1(H) 6 f(ρ(B)) + 3δ follows easily.



Geronimus Polynomials

For the adjacency matrix A of a d-regular graph, we may have

at the same time Hermitian and non-backtracking paths!

Let (NBk)x,y be the number of non-backtracking paths of length

k between x and y in G: we have the matrix identities

NB0 = IV , NB1 = A and for k > 2,

NBk+1 = NBk ·A− (d− 1)NBk−1.

x

yz(NBk)xz

Azy

−(NBk+1)xy =

x

y

(NBk−1)xy



Geronimus Polynomials

It follows that for a monic polynomial of degree k of A:

NBk = Gk(A).

From the three-terms recurrence relation:

Gk+1(λ) = λGk(λ)− (d− 1)Gk−1(λ),

we �nd

Gk(λ) = (d− 1)
k
2Uk

(
λ

2
√
d− 1

)
− (d− 1)

k
2
−1Uk−2

(
λ

2
√
d− 1

)
,

where Uk(cos θ) = sin((k + 1)θ)/ sin(θ) is the Chebychev

polynomial of the second kind.



Geronimus Polynomials

If A is the adjacency operator of the in�nite d-regular tree, then

(Gk(A)G`(A))xx =
∑
y

Gk(A)xyG`(A))xy = d(d− 1)k−11(k = `).

since Gk(A)xy ∈ {0, 1} is 1 is x and y are at distance k.



Geronimus Polynomial

The spectral measure of the adjacency operator A of the

d-regular tree is de�ned by, for all k ∈ N,∫
λkdµ(λ) = (Ak)xx.

In particular,

(Gk(A)G`(A))xx = d(d− 1)k−11(k = `) =

∫
Gk(λ)G`(λ)dµ(λ).

The polynomials Gk are thus orthogonal with respect to µ.



Kesten-McKay distribution

∫
λkdµ = (Ak)xx.

Kesten (1959): µ has support [−2
√
d− 1, 2

√
d− 1] and density

d

2π

√
4(d− 1)− λ2

d2 − λ2
.
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F¶redi-Komlós bound revisited



Spectral radius of random nonbacktracking matrices

Let H ∈Mn(C) be an Hermitian random matrix with

independent centered entries (Hxy)x>y above the diagonal,

for all x, y, E|Hxy|2 6
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

Let B be the nonbactracking matrix of H. Recall

‖H‖2→∞ = maxx
√∑

y |Hxy|2

Theorem

Let q′ = min(q, n1/10), with high probability,

ρ(B) 6 1 +
C

q′
.



Spectral radius of random nonbacktracking matrices

For the Erd®s-Renyi graph with average degree d and

H = (A− EA)/
√
d, we have that ‖H‖22→∞ ∼ maxx deg(x)/d

concentrates around 1 iif q2 = d� log n. Then ‖H‖ 6 2 + o(1).

For q2 = d = O(log n), the bound on ‖H‖ is o� by a

multiplicative factor.

In the regime d� log n, for the non-backtracking matrix of A

or H, we have ρ(B) = O(1)� ‖B‖ ∼ maxx
√

deg(x). This is an

e�ect of the non-normality of B.

The bound on ρ(B) is not optimal for d = O(1).



Expected high trace method

We have for any ` ∈ N

ρ(B) 6 ‖B`‖
1
` .

Since ‖A‖2 = ‖AA∗‖, for even k,

ρ(B)k 6 ‖Bk/2(Bk/2)∗‖ 6 Tr
(
Bk/2(Bk/2)∗

)
.

We aim at, for some k � log n,

ETr
(
Bk/2(Bk/2)∗

)
6 Cn2k2.



Expected high trace method

Expanding the trace

ETr
(
Bk/2(Bk/2)∗

)
= E

∑
e,f

(
Bk/2

)
ef

(
Bk/2

)∗
fe

6 n2
∑
γ∈Nk

n−(e(γ)−v(γ)+1)q−(k−2e(γ)),

where Nk is the set of unlabeled paths γ = (γ0, . . . , γk) which

visits each edge at least twice,

γt+1 6= γt−1 for all t 6= k

2
,

and the boundary conditions

γ0

γk

γ k
2
−1

γ k
2

+1

γ k
2



Expected high trace method

ETr
(
Bk/2(Bk/2)∗

)
6 n2

∑
γ∈Nk

n−(e(γ)−v(γ)+1)q−(k−2e(γ)),

For nonbacktracking paths, we can estimate Nk by genus

g = e− v + 1 and visited edges k − 2e.



Expected high trace method

Let γ in Nk which visits e 6 k/2 edges and v vertices. Set

g = e− v + 1 > 0. We build a reduced graph Ĝ(γ) by removing

inner vertices of degree 2.

γ0
γk

γ k
2

The path γ̂ = (γ̂0, . . . , γ̂k̂) in the reduced graph Ĝ(γ) determines

the original path.

Fact: Ĝ(γ) has genus ĝ = g, ê 6 3g + 1 edges, v̂ 6 2g + 2

vertices.



Expected high trace method

Let γ in Nk which visits e 6 k/2 edges and v vertices. Set

g = e− v + 1 > 0. We build a reduced graph Ĝ(γ) by removing

inner vertices of degree 2.

γ0
γk

γ k
2

The path γ̂ = (γ̂0, . . . , γ̂k̂) in the reduced graph Ĝ(γ) determines

the original path.

Fact: Ĝ(γ) has genus ĝ = g, ê 6 3g + 1 edges, v̂ 6 2g + 2

vertices.



Expected high trace method

The reduced graph Ĝ(γ) has ê 6 3g + 1 edges and v̂ 6 2g + 2

vertices:

We have 2ê =
∑

x deg(x). Since all but two vertices have degree

at least 3:

2ê > 3(v̂ − 2) + 2 = 3v̂ − 4.

2ê− 2v̂ + 2 = 2ĝ = 2g,

we get v̂ 6 2g + 2.

Consequently, ê = ĝ + v − 1 6 3g + 1.



Expected high trace method

The number of reduced paths γ̂ = (γ̂0, . . . , γ̂k̂) of length k̂ with

genus g is at most

êk̂v̂ê,

(at each time 1 6 s 6 k̂, we choose one of the ê 6 3g + 1 edges

and choose the end vertex of each new edge).

Moreover, since k − 2e =
∑

e(me − 2),

k − 2e > k̂ − 2ê > k − 6g.



Expected high trace method

The number of reduced paths γ̂ = (γ̂0, . . . , γ̂k̂) of length k̂ with

genus g is at most

êk̂v̂ê 6 (3g + 1)k̂(2g + 2)3g+1,

(at each time 1 6 s 6 k̂, we choose one of the ê 6 3g + 1 edges

and choose the end vertex of each new edge).

Moreover, since k − 2e =
∑

e(me − 2),

k − 2e > k̂ − 2ê > k − 6g.



Expected high trace method

The number of reduced paths γ̂ = (γ̂0, . . . , γ̂k̂) of length k̂ with

genus g is at most

êk̂v̂ê 6 (3g + 1)k̂(2g + 2)3g+1,

(at each time 1 6 s 6 k̂, we choose one of the ê 6 3g + 1 edges

and choose the end vertex of each new edge).

Moreover, since k − 2e =
∑

e(me − 2),

k − 2e > k̂ − 2ê > k − 6g.



Expected high trace method

We estimate the number of paths γ ∈ Nk associated to a

reduced path γ̂.

If ni is the number of edges in G(γ) associated to the i-th edge

of Ĝ(γ) and mi > 2 its multiplicity, we have

ê∑
i=1

nimi = k.

Hence, our number is at most the number of positive integer

vectors (pi) such that
∑

i pi > k:(
k − 1

ê− 1

)
6

(
3(k − 1)

ê− 1

)ê−1

6

(
k

g

)3g

.



Expected high trace method

We estimate the number of paths γ ∈ Nk associated to a

reduced path γ̂.

ni = 4

If ni is the number of edges in G(γ) associated to the i-th edge

of Ĝ(γ) and mi > 2 its multiplicity, we have

ê∑
i=1

nimi = k.

Hence, our number is at most the number of positive integer

vectors (pi) such that
∑

i pi > k:(
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(
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)ê−1

6

(
k

g

)3g

.



Expected high trace method

We estimate the number of paths γ ∈ Nk associated to a

reduced path γ̂.

ni = 4

If ni is the number of edges in G(γ) associated to the i-th edge

of Ĝ(γ) and mi > 2 its multiplicity, we have

ê∑
i=1

nimi = k.

Hence, our number is at most the number of positive integer

vectors (pi) such that
∑

i pi > k:(
k − 1

ê− 1

)
6

(
3(k − 1)

ê− 1

)ê−1

6

(
k

g

)3g

.



Expected high trace method

Finally,

ETr
(
Bk/2(Bk/2)∗

)
6 n2

∑
γ∈Nk

n−(e(γ)−v(γ)+1)q−(k−2e(γ))

6 n2
∞∑
g=0

n−g
k∑
k̂=g

q−(k̂−6g)

(
k

g

)3g

(3g + 1)k̂(2g + 2)3g+1.

The computation is then straightforward: we �nd, if

k 6 cmin(q log n, n0.33q−2),

ETr
(
Bk/2(Bk/2)∗

)
6 Cn2k2.



Remarks

The same argument works for inhomogeneous Wigner matrices

with bounded row variances:

for all x, E
∑
y

|Hxy|2 6 1 and a.s.−max
x,y
|Hxy| 6

1

q
.

Provided that maxE|Hxy|2 is not too large.
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Diluted random matrices



Diluted random matrices

We will now study random matrices with O(1) non-zero entries

on each row. For example, adjacency matrix of a random

4-regular graph on n vertices.

For the random matrices of interest, classical expected high

trace method will not work properly, even when applied to

nonbacktracking matrices.

Two extra technical problems: usually, we cannot recenter easily

the entries of the matrices, and for many models of interest, the

entries are not independent.



Uniform regular graphs



Regular graph

For 2 6 d 6 n− 1 and nd even, the set G(n, d) of d-regular

graphs on the vertex set {1, . . . , n} is not empty.

A uniform d-regular graph on n is a random graph sampled

according to the uniform distribution on G(n, d).



Eigenvalues

Consider the adjacency matrix A of a d-regular graph on n

vertices with eigenvalues

d = λ1 > λ2 > · · · > λn,

(we have A1 = d1).

Recall that

µA =
1

n

∑
k

δλk

is the empirical distribution of eigenvalues.



Kesten-McKay distribution

The spectral measure µd of the in�nite d-regular tree Td is∫
λkdµd = (AkTd)xx.

Kesten (1959): µd has support [−2
√
d− 1, 2

√
d− 1] and density

d

2π

√
4(d− 1)− λ2

d2 − λ2
.



Empirical distribution of eigenvalues

Theorem (McKay (1981))

Let d > 2 and G = Gn a sequence of d-regular graphs on n

vertices. Assume that for any integer `, the number of cycles of

length ` in G is o(n). Then, if A is the adjacency matrix of G,

weakly,

lim
n→∞

µA = µd.

We may apply this result to a uniform d-regular graph on n

vertices.



McKay Theorem

Take d = 4, n = 2000 and G a uniformly sampled d-regular

graph.



McKay Theorem

Let G be a d-regular graph on n vertices and A its adjacency

matrix. For any �xed `, the nb of cycles of length 6 ` is

C` = o(n).

If a vertex x is at distance at least k to any cycle of length at

most 2k, then the k-neighborhood of x is a d-regular tree of

depth k. In particular,

(Ak)xx = (AkTd)oo =

∫
λkdµd.

The number of such vertices is at least n− Ckk(d− 1)k.∣∣∣∣ 1nTrAk −
∫
λkdµd

∣∣∣∣ =

∣∣∣∣∣ 1n∑
x

(Ak)xx −
∫
λkdµd

∣∣∣∣∣ 6 Ckk(d− 1)kdk

n
= o(1).



Alon-Boppana lower bound

Consider the adjacency matrix A of a d-regular graph on n

vertices with eigenvalues

d = λ1 > λ2 > · · · > λn.

Theorem (Alon - Boppana (1986), Mohar (2010))

For any d-regular on n vertices,

λ2 > 2
√
d− 1− cd

(log n)2
.

The spectral radius of ATd is a lower bound on λ2.



Alon-Boppana lower bound

Every graph has a uninversal covering tree T = (V, E)

A construction of T : take o ∈ G, V is the set of all

nonbacktracking paths (x0, · · · , xk) starting from x0 = o

(xi−1 6= xi+1). Two paths share an edge if one is the largest

pre�x of the other.
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Alon-Boppana lower bound

Weaker result on λ? = maxi>2 |λi| = λ2 ∨ (−λn).

The universal covering tree of G is Td.

The nb of closed walks starting from x in G of length k is at

least the nb of closed walks starting from the root in Td of
length k:

1

n
Tr(Ak) =

1

n

∑
x

(Ak)xx > (Ak)oo =

∫
λkdµd.

For k even, ∫
λkdµd >

c

k3/2

(
2
√
d− 1

)k
.



Alon-Boppana lower bound

For even k,

Tr(Ak) =
∑
j

λkj 6 dk + nλk?.

So �nally,
c

k3/2

(
2
√
d− 1

)k
6
dk

n
+ λk?.

Take k = logd n.

Replacing λ? by λ2 requires a re�nement of this strategy

(without trace).



Ramanujan graphs

Let G be a d-regular graph on n vertices. Consider its adjacency

matrix A

d = λ1 > λ2 > · · · > λn.

λn = −d is equivalent to G bipartite.

The largest non-trivial eigenvalue is

λ? = max
i
{|λi| : |λi| 6= d}.

G is Ramanujan if

λ? 6 2
√
d− 1.

Ramanujan = non trivial eigenvalues bounded by the spectral

radius of the adjacency operator of the universal covering tree.



Alon's conjecture (1986)

Theorem (Friedman (2008))

Fix an integer d > 3. Let Gn is a sequence of uniformly

distributed d-regular graphs on n vertices, then with high

probability,

λ2 ∨ |λn| 6 2
√
d− 1 + o(1).

Most regular graphs are nearly Ramanujan!

We can take o(1) = c(log log n)/(log n)2.



Expected high trace method

If A is the adjacency matrix of Gn we would like to prove that

for even k � log n,

dk + λk2 + λkn 6 Tr(Ak)
?
6 dk + n

(
2
√
d− 1 + o(1)

)k
.

Friedman's Theorem would follow.

Since A1 = d1, it is wiser to project orthogonally on 1⊥:

Tr(Ak)− dk = Tr

(
A− d

n
11∗

)k ?
6 n

(
2
√
d− 1 + o(1)

)k
.



Expected high trace method

For a �rst moment estimate, we would aim at

ETr(Ak)− dk = ETr

(
A− d

n
11∗

)k ?
6 n

(
2
√
d− 1 + o(1)

)k
for k � log n.

This is wrong !

The probability that the graph contains Kd+1 as subgraph is at

least n−c. On this event λ2 = d. Hence, for even k � log n,

ETr

(
A− d

n
11∗

)k
> n−cdk � n

(
2
√
d− 1 + o(1)

)k
.

Subgraphs which have polynomially small probability compromise

the expected high trace method. Called Tangles.



Strategy

1. Use the nonbacktracking matrix B instead of A.

2. Remove the tangles.

3. Project on 1⊥.

4. Use the expected high trace method to evaluate the

remainder terms.



Nonbacktracking matrix

Oriented edge set :

~E = {(x, y) : {x, y} ∈ E},

Consider the matrix B acting on R ~E with entries

Bef = 1(y = a)1(x 6= b),

where e = (x, y) and f = (a, b).

e f

x y = a b 6= x



Nonbacktracking version of Alon's conjecture

Complex eigenvalues, | ~E| = nd,

d− 1 = µ1 > |µ2| > · · · > |µnd|.

Using the Hashimoto-Ihara-Bass identities:

Theorem (Friedman (2008))

Fix an integer d > 3. Let Gn is a sequence of uniformly

distributed d-regular graphs on n vertices, then with high

probability,

|µ2| 6
√
d− 1 + o(1).



Configuration model

The oriented edge set ~E, | ~E| = nd is written as, with

V = {1, . . . , n},
~E = V × {1, . . . , d}.

(x, i)
yx

(y, j) = σ(x, i)

A matching σ on ~E de�nes a multigraph G = G(σ) where a

matching is a permutation such that σ2(x) = x and σ(x) 6= x.



Configuration model

We take σ a uniform random matching on ~E.

Conditioned on the multigraph G = G(σ) to be simple, G(σ) is

uniformly distributed on G(n, d), d-regular graphs on

V = {1, . . . , n}.

The probability for G = G(σ) to be simple is lower bounded

uniformly in n.

Since P(Ec|F ) 6 P(Ec)/P(F ), it is enough to prove Friedman's

Theorem for the con�guration model.



Configuration model

The nonbacktracking matrix with f = (y, i),

Bef = 1(σ(e) = (y, j) for some j 6= i).

can be written as

B = MN

where

Nef = 1(e1 = f1, e 6= f) = Nfe.

and M is the permutation matrix associated to σ,

Mef = 1(σ(e) = f) = Mfe.



Restricted spectral radius

Since B1 = B∗1 = (d− 1)1, |µ2| is the spectral radius of B1⊥ .

For any integer `, the second largest eigenvalue of B is thus

bounded by

|µ2|` 6 max
v:〈1,v〉=0

∥∥B`v
∥∥

2

‖v‖2
.

We prove if σ is a uniform random matching that with high

probability

max
v:〈1,v〉=0

∥∥B`v
∥∥

2

‖v‖2
6 (log n)c(d− 1)`/2.

with ` ' log n.



Path decomposition

Recall Mef = 1(σ(e) = f), Nef = 1(e1 = f1, e 6= f)

B`
ef =

(
(MN)`

)
ef

=
∑
γ∈Γ`ef

∏̀
s=1

Mγ2s−1γ2s ,

where Γ`ef is the set of paths γ = (γ1, . . . , γ2`+1) ∈ ( ~E)2`+1 such

that γ1 = e, γ2k+1 = f and Nγ2sγ2s+1 = 1.

γ1 = e

γ3

γ4

γ2

γ5 = f
` = 2



Path decomposition

B`
ef =

∑
γ∈Γ`ef

∏̀
s=1

Mγ2s−1γ2s ,

The set of paths Γ`ef is independent of σ: combinatorial part.

The summand is the probabilistic part.

1 2 3

5 4

12

1 2 1 1

2

1

3

2

21

2

3

γ = (1, 1)(1, 2)(1, 1)(2, 2)(2, 1)(3, 1)(3, 2)(4, 1)(4, 2)(3, 3)(3, 2)(4, 1)(4, 2)(5, 1)(5, 2)(2, 3)(2, 1)(3, 1)



Path decomposition

B`
ef =

(
(MN)`

)
ef

=
∑
γ∈Γ`ef

∏̀
s=1

Mγ2s−1γ2s ,

The projection of M on 1⊥ is,

M = M − 11∗

nd
.

Hence, if 〈v,1〉 = 0, we get

B`v = B`v,

where B = MN and

B`
ef =

(
(MN)`

)
ef

=
∑
γ∈Γ`ef

∏̀
s=1

Mγ2s−1γ2s .



Tangles

A multi-graph (or a path) is tangle-free if it contains at most

one cycle.

A multi-graph (or a path) is `-tangle-free if all vertices have at

most at most one cycle in their `-neighborhood.

We denote by F `ef the subset of tangle-free paths Γ`ef .



Path decomposition

Assume that G = G(σ) is `-tangle-free. Then, for 0 6 k 6 `,

Bk = B(k),

where

(B(k))ef =
∑
γ∈Fkef

k∏
s=1

Mγ2s−1γ2s .

Recall M = M − 11∗/(nd). For 0 6 k 6 `, we de�ne the

"projected" matrix

(B(k))ef =
∑
γ∈Fkef

k∏
s=1

Mγ2s−1γ2s .



Path decomposition

Beware that Bk 6= B(k), this is only approximately true!

Since Mef = M ef + 1/(nd),

(B(`))ef = (B(`))ef +
∑
γ∈F `ef

∑̀
k=1

k−1∏
s=1

Mγ2s−1γ2s

(
1

nd

) ∏̀
k+1

Mγ2s−1γ2s ,

which follows from the identity,

∏̀
s=1

xs =
∏̀
s=1

ys +
∑̀
k=1

k−1∏
s=1

ys(xk − yk)
∏̀
k+1

xs.



Path decomposition

A path γ ∈ F `ef can be decomposed as the union of

γ′ ∈ F k−1
ea , γ′′ ∈ F 1

ab and γ′′′ ∈ F `−kbf .

with a = γ2k−1, b = γ2k+1.

e fa b

γ′ γ′′ γ′′′



Path decomposition

For any e, f , we have |Γ1
ef | = (d− 1). We �nd

∑
γ∈F `

ef

k−1∏
s=1

Mγ2s−1γ2s

∏̀
k+1

Mγ2s−1γ2s = (d− 1)
(
B(k−1)11∗B(`−k)

)
ef
−
(
R

(`)
k

)
ef

where
(
R

(`)
k

)
ef

sums tangle-free paths whose union is tangled:

e fγ2k−1

γ2k+1

e fγ2k−1

γ2k+1

e fγ2k−1

γ2k+1



Path decomposition

So �nally,

B(`) = B(`) +
d− 1

nd

∑̀
k=1

B(k−1)11∗B(`−k) − 1

nd

∑̀
k=1

R
(`)
k .

Hence, if 1∗v = 〈v,1〉 = 0 and G = G(σ) is `-tangle-free, since

1∗B(`−k) = 1∗B`−k = (d− 1)`−k1∗,

B(`)v = B(`)v − 1

nd

∑̀
k=1

R
(`)
k v.



Path decomposition

We arrive at

|µ2|` 6 max
v:〈1,v〉=0

∥∥B`v
∥∥

2

‖v‖2
6 ‖B(`)‖+

1

nd

∑̀
k=1

‖R(`)
k ‖.

This inequality holds if G(σ) is ` tangle-free.

Fact: For uniform random σ, G(σ) is ` tangle-free with high

probability for ` = 0.1 log n/ log(d− 1). (Lubetzky-Sly (2010))



Expected high trace method

|µ2|` 6 ‖B(`)‖+
1

nd

∑̀
k=1

‖R(`)
k ‖.

Our aim is then to prove that with high probability

‖B(`)‖ 6 (log n)c(d− 1)`/2 and ‖R(`)
k ‖ 6 (log n)c(d− 1)`−k/2

By estimating, for S = B(`) or S = R
(`)
k .

E‖S‖2k 6 ETr(SS∗)k.

with k ' log n/(log log n): on the overall paths of length

2`k � log n.



Expected high trace method

For S = B(`),

E‖S‖2k 6 ETr(SS∗)k 6
∑
γ

E
2k∏
i=1

∏̀
t=1

Mγi,2t−1γi,2t

γ1

γ2γ2i−1

γ2i

γ2k

The path γ = (γi,t) is made of 2k tangle-free paths of length `.

To control the nb of such paths with a given genus and given

number of vertices, we use crucially the fact that each γi visits

at most one cycle in the reduced graph of G(γ).



Expected high trace method

For S = B(`),

E‖S‖2k 6 ETr(SS∗)k 6
∑
γ

E
2k∏
i=1

∏̀
t=1

Mγi,2t−1γi,2t .

Recall M ef = Mef − 1/(dn). The probabilistic part relies on the

claim: for T 6
√
dn and any (et, ft)t ∈ ~E2T ,∣∣∣∣∣E

T∏
t=1

(
Metft −

1

dn

)∣∣∣∣∣ 6 c

(
1

dn

)a( 3T√
dn

)a1
,

where a is the nb of distinct unordered pairs {et, ft} and a1 is

the nb of pairs appearing exactly once.
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Non-backtracking spectrum of

Erd®s-Renyi graphs



Non-backtracking spectrum of Erd®s-Renyi graphs

Eigenvalues of B for an Erd®s-Rényi graph with average degree

d = 4 and n = 500 vertices.



Erd®s-Rényi Graph

Let B be the nonbacktracking matrix of the adjacency matrix

A, with eigenvalues

µ1 > |µ2| > · · ·

Theorem

Let d > 1 and Gn be an Erd®s-Rényi graph with average degree

d. With high probability,

µ1 = d+ o(1)

|µ2| 6
√
d+ o(1).

Bordenave, Massoulié & Lelarge (2018)



Erd®s-Rényi Graph

The bound |µ2| 6
√
d+ o(1) is a Ramanujan property: the

spectral radius of the nonbacktracking operator of the universal

covering tree of Gn is
√
d+ o(1).

There is an analog result for the stochastic block model

(inhomogeneous Erd®s-Rényi random graphs with �nite number

of classes).

The proof follows the same strategy. The path decomposition is

much more involved, the eigenvector associated to µ1 is

genuinely random.



Strong asymptotic freeness of uniform permutations



Algebra of permutation matrices

Let σ1, . . . , σq permutations on {1, . . . , n}.

Let S1, . . . , Sq their permutation matrices:

(Si)xy = 1(σi(x) = y).

For a given non-commutative polynomial P , we consider the

matrix in Mn(C)

P = P (S1, . . . , Sq, S
∗
1 , . . . , S

∗
q ).

Examples : P = S1S
2
2S
∗
1 − S3S

∗
1S3 or P = S1 + S2 + S∗1 + S∗2

(adjacency matrix of 4-regular graph).



Strong convergence of random permutations

The constant vector 1 is an eigenvector of P and P ∗.

The operator norm of P on 1⊥ is∥∥∥P|1⊥∥∥∥ = sup
f∈1⊥

‖Pf‖2
‖f‖2

.

What is the value of
∥∥∥P|1⊥∥∥∥ when n is large and σ1, . . . , σq

uniform random permutations?



Algebra of the free group

Let X be the free group with q generators g1, . . . , gq and their

inverses.

g2

g−12

g−11
g1

Consider the operator on `2(X),

P? = P
(
λ(g1), . . . , λ(gq), λ(g−1

1 ), . . . , λ(g−1
q )
)
,

where λ(·) is the left-regular representation (left multiplication).



Strong asymptotic freeness

P = P (S1, . . . , Sq, S
∗
1 , . . . , S

∗
q ).

‖T‖ = sup
f 6=0

‖Tf‖2
‖f‖2

.

Theorem

Let S1, · · · , Sq be independent uniform permutation matrices in

Sn. Then with high probability, as n→∞,∥∥∥P|1⊥∥∥∥ = ‖P?‖+ o(1).

Bordenave & Collins (2018)



Strategy

Set i∗ = i+ q, i∗∗ = i and Si∗ = S∗i .

Linearization trick: it is enough to consider symmetric linear

polynomials with matrix coe�cients :

A = a0 +

2q∑
i=1

ai ⊗ Si

where ai ∈Mk(C) et ai∗ = a∗i .

Claim: the convergence of the spectra of such matrices A implies

the convergence of the operator norm of all non-commutative

polynomial P .



Strategy

Nonbacktracking: we introduce the nonbactracking matrix with

matrix coe�cients:

B =
∑

(i,j):i 6=j∗
ai ⊗ Si ⊗ Eij .

Claim: the convergence of the spectral radii of all nonbactracking

matrices implies the convergence of the spectrum of A

(Extensions of Hashimoto-Ihara-Bass identities).

To deal with nonbactracking matrix with matrix coe�cients, we

adapt the strategy used in the proof for the uniform regular

graphs: removing tangles / projection / expected high trace

method. This is more involved, due to the matrices ai.



Remarks

Extend to tensor products: polynomial in Si ⊗ Si and other

random unitary matrices.

The matrix A =
∑2q

i=1 ai ⊗ Si is a random n-lift if

ai = Exi,yi ∈Mk(C): A1 =
∑

i (ai + a∗i ). is the adjacency matrix

of a graph with k vertices and q edges.

The convergence of the non-trivial eigenvalues of A is a

generalization of Alon's conjecture to random n-lifts.
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Remarks

Extend to tensor products: polynomial in Si ⊗ Si and other

random unitary matrices.

The matrix A =
∑2q

i=1 ai ⊗ Si is a random n-lift if

ai = Exi,yi ∈Mk(C): A1 =
∑

i (ai + a∗i ). is the adjacency matrix

of a graph with k vertices and q edges.

The convergence of the non-trivial eigenvalues of A is a

generalization of Alon's conjecture to random n-lifts.



Concluding words



Thank you for your attention !


