High Trace methods in Random matrix THEORY

Charles Bordenave

CNRS \& Aix-Marseille Université

The nonbacktracking matrix

Nonbacktracking matrix

Let H be a matrix in $M_{n}(\mathbb{C})$.

Consider the matrix B in $M_{n^{2}}(\mathbb{C})$ with entries

$$
B_{e f}=H_{a b} \mathbf{1}(y=a) \mathbf{1}(x \neq b),
$$

where $e=(x, y)$ and $f=(a, b)$.

Beware that if H is Hermitian, B is not! (not even normal).
Hashimoto (1989).

Nonbacktracking matrix on a graph

Variant: H is a matrix in $M_{n}(\mathbb{C})$ whose non-zeros entries (x, y) are edges of an undirected graph $G=(V, E)$ with vertices $V=\{1, \cdots, n\}$ and edges $E \subset\{\{x, y\}: x, y \in V\}$.

Then, the set of oriented edges of G is

$$
\vec{E}=\{(x, y):\{x, y\} \in E\}
$$

Define the matrix \widetilde{B} which acts on \vec{E} and with entries

$$
\widetilde{B}_{e f}=H_{a b} \mathbf{1}(y=a) \mathbf{1}(x \neq b),
$$

where $e=(x, y)$ and $f=(a, b)$ in \vec{E}.

The two definitions of B coincides: $F=\operatorname{span}\left(\delta_{(x, y)}:\{x, y\} \notin E\right)$ is invariant by B and B^{*} and $B_{\mid F}=0, B_{\mid F^{\perp}}=\widetilde{B}$.

Nonbacktracking matrix and geodesics

For any $k \in \mathbb{N}$,

$$
B_{e f}^{k}=\sum_{\gamma} \prod_{t=1}^{k} H_{\gamma_{t} \gamma_{t+1}}
$$

where the sum is over nonbacktracking paths from e to f of length $k+1$, i.e. paths $\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k+1}\right)$ such that $\left(\gamma_{0}, \gamma_{1}\right)=e$, $\left(\gamma_{k}, \gamma_{k+1}\right)=f$ and $\gamma_{t-1} \neq \gamma_{t+1}$. This is a discrete geodesic.

On a tree, nonbacktracking paths are shortest paths.

Nonbacktracking spectral identities

Despite its non-normality, due to its strong geometric flavour, nonbacktracking matrices are often easier to study.

There exists a familly of identities between eigenvalues and eigenvectors of a matrix and eigenvalues and eigenvectors of nonbacktracking matrices.

It allows to study the spectrum of matrix through its nonbactracking spectrum.

We will follow this strategy for computing largest eigenvalues.

Hashimoto-Ihara-Bass identity

Assume that $A \in M_{n}(\mathbb{C})$ is the adjacency matrix of a graph $G=(V, E)$.

Let Q be the diagonal matrix : $Q_{x x}=\operatorname{deg}(x)-1$. We have

$$
\operatorname{det}\left(z I_{\vec{E}}-B\right)=\left(z^{2}-1\right)^{|E|-|V|} \operatorname{det}\left(z^{2} I_{V}-A z+Q\right)
$$

If G is a d-regular graph, that is for all $x \in V, \operatorname{deg}(x)=d$, then $Q=(d-1) I_{V}$ and

$$
\sigma(B)=\{ \pm 1\} \cup\left\{\mu: \mu^{2}-\lambda \mu+(d-1)=0 \text { avec } \lambda \in \sigma(A)\right\} .
$$

Lemma

Let H be Hermitian with nonbacktracking matrix B and let $\mu \in \mathbb{C}, \mu>\left|H_{x y}\right|$ for all x, y. Define H_{μ} and D_{μ} diagonal
$\left(H_{\mu}\right)_{x y}=\frac{H_{x y}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}, \quad\left(D_{\mu}\right)_{x x}=\mu+\frac{1}{\mu} \sum_{y} \frac{\left|H_{x y}\right|^{2}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}$.
Then $\mu \in \sigma(B)$ if and only if $0 \in \sigma\left(H_{\mu}-D_{\mu}\right)$.

There is also a determinantal identity which extends the Hashimoto-Ihara-Bass identity.

From nonbacktracking to classical spectrum Let $v \in \mathbb{C}^{n^{2}}$. Introduce the divergence vector $u \in \mathbb{C}^{n}$,

$$
u_{x}=\sum_{y} H_{x y} v_{x y}
$$

Assume that $B v=\mu v$ then

$$
\mu v_{y x}=\sum_{y^{\prime} \neq y} H_{x y^{\prime}} v_{x y^{\prime}}=u_{x}-H_{x y} v_{x y}
$$

Switching x and y,

$$
\mu v_{x y}=u_{y}-\bar{H}_{x y} v_{y x}
$$

Hence $\mu^{2} v_{x y}=\mu u_{y}-\bar{H}_{x y} u_{x}+\left|H_{x y}\right|^{2} v_{x y}$ and (as $\left.\mu \neq\left|H_{x y}\right|\right)$

$$
v_{x y}=\frac{\mu u_{y}-\bar{H}_{x y} u_{x}}{\mu^{2}-\left|H_{x y}\right|^{2}}
$$

From nonbacktracking to classical spectrum

$$
v_{x y}=\frac{\mu u_{y}-\bar{H}_{x y} u_{x}}{\mu^{2}-\left|H_{x y}\right|^{2}} .
$$

We have $u \neq 0$ iff $v \neq 0$.

Writing the eigenvalue equation $B v=\mu v$ in terms of u, we arrive at ...

$$
\left(H_{\mu}-D_{\mu}\right) u=0 .
$$

with

$$
\left(H_{\mu}\right)_{x y}=\frac{H_{x y}}{1-\mu^{-2}\left|H_{x y}\right|^{2}} \quad\left(D_{\mu}\right)_{x x}=\mu+\frac{1}{\mu} \sum_{y} \frac{\left|H_{x y}\right|^{2}}{1-\mu^{-2}\left|H_{x y}\right|^{2}} .
$$

As requested.

From classical to nonbacktracking spectrum

Let H be Hermitian with nonbacktracking matrix B and let $\mu \in \mathbb{C}, \mu>\left|H_{x y}\right|$ for all x, y. Define H_{μ} and D_{μ} diagonal $\left(H_{\mu}\right)_{x y}=\frac{H_{x y}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}, \quad\left(D_{\mu}\right)_{x x}=\mu+\frac{1}{\mu} \sum_{y} \frac{\left|H_{x y}\right|^{2}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}$.

Then $\mu \in \sigma(B)$ if and only if $0 \in \sigma\left(H_{\mu}-D_{\mu}\right)$.
It is possible to invert the statement and obtain a claim like:

Let $H \in M_{n}(\mathbb{C})$ and $\lambda \in \mathbb{R} \backslash S$, there exists \hat{H}_{λ} with associated nonbacktracking matrix \hat{B}_{λ} such that $\mu \in \sigma(H)$ if and only if $1 \in \sigma\left(\hat{B}_{\lambda}\right)$.

We will see an explicit form of such statement later on.

A FIRST APPLICATION

For $A \in M_{n}(\mathbb{C})$, the spectral radius is

$$
\rho(A)=\max \{|\mu|: \mu \in \sigma(A)\} .
$$

The operator norm is

$$
\|A\|=\|A\|_{2 \rightarrow 2}=\sup _{f \neq 0} \frac{\|A f\|_{2}}{\|f\|_{2}}
$$

and

$$
\|A\|_{2 \rightarrow \infty}=\max _{x} \sqrt{\sum_{y}\left|A_{x y}\right|^{2}}, \quad\|A\|_{1 \rightarrow \infty}=\max _{x, y}\left|A_{x y}\right|
$$

Lemma

If H is Hermitian with non-backtracking matrix B, then, with $f(\mu)=\mu+1 / \mu$ for $\mu \geqslant 1$ and $f(\mu)=2$ for $\mu \leqslant 1$,

$$
\|H\| \leqslant .
$$

A FIRST APPLICATION

For $A \in M_{n}(\mathbb{C})$, the spectral radius is

$$
\rho(A)=\max \{|\mu|: \mu \in \sigma(A)\} .
$$

The operator norm is

$$
\|A\|=\|A\|_{2 \rightarrow 2}=\sup _{f \neq 0} \frac{\|A f\|_{2}}{\|f\|_{2}}
$$

and

$$
\|A\|_{2 \rightarrow \infty}=\max _{x} \sqrt{\sum_{y}\left|A_{x y}\right|^{2}}, \quad\|A\|_{1 \rightarrow \infty}=\max _{x, y}\left|A_{x y}\right|
$$

Lemma

If H is Hermitian with non-backtracking matrix B, then, with $f(\mu)=\mu+1 / \mu$ for $\mu \geqslant 1$ and $f(\mu)=2$ for $\mu \leqslant 1$,

$$
\|H\| \leqslant\|H\|_{2 \rightarrow \infty} f\left(\frac{\rho(B)}{\|H\|_{2 \rightarrow \infty}}\right)+3\|H\|_{1 \rightarrow \infty}
$$

A FIRST APPLICATION

For $A \in M_{n}(\mathbb{C})$, the spectral radius is

$$
\rho(A)=\max \{|\mu|: \mu \in \sigma(A)\} .
$$

The operator norm is

$$
\|A\|=\|A\|_{2 \rightarrow 2}=\sup _{f \neq 0} \frac{\|A f\|_{2}}{\|f\|_{2}}
$$

and

$$
\|A\|_{2 \rightarrow \infty}=\max _{x} \sqrt{\sum_{y}\left|A_{x y}\right|^{2}}, \quad\|A\|_{1 \rightarrow \infty}=\max _{x, y}\left|A_{x y}\right|
$$

Lemma

If H is Hermitian with non-backtracking matrix B, then, with $f(\mu)=\mu+1 / \mu$ for $\mu \geqslant 1$ and $f(\mu)=2$ for $\mu \leqslant 1$,

$$
\|H\| \leqslant 2\|H\|_{2 \rightarrow \infty}+\frac{\left(\rho(B)-\|H\|_{2 \rightarrow \infty}\right)_{+}^{2}}{\|H\|_{2 \rightarrow \infty}}+3\|H\|_{1 \rightarrow \infty} .
$$

A FIRST APPLICATION

Assume $\|H\|_{2 \rightarrow \infty}=1$. We set $\delta=\max \left|H_{x y}\right|=\|H\|_{1 \rightarrow \infty}$ and

$$
\mu_{0}=\max (1+\delta, \rho(B))
$$

Recall

$$
\left(H_{\mu}\right)_{x y}=\frac{H_{x y}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}, \quad\left(D_{\mu}\right)_{x x}=\mu+\frac{1}{\mu} \sum_{y} \frac{\left|H_{x y}\right|^{2}}{1-\mu^{-2}\left|H_{x y}\right|^{2}} .
$$

From the lemma: we have $\operatorname{det}\left(H_{\mu}-D_{\mu}\right) \neq 0$ for all $\mu \in\left(\mu_{0}, \infty\right)$.

Since $H_{\mu}-D_{\mu}=I+O\left(\mu^{-1}\right)$ as $\mu \rightarrow \infty$,

$$
H_{\mu_{0}}-D_{\mu_{0}} \succeq 0
$$

A FIRST APPLICATION

Recall, $\mu_{0}=\max (1+\delta, \rho(B))$.

From the formulas of H_{μ} and D_{μ}, we find, for $\mu \geqslant \mu_{0}$,

$$
\begin{aligned}
&\left|\left(H_{\mu}\right)_{x y}-H_{x y}\right|=\mid \frac{H_{x y}}{1-\mu^{-2}\left|H_{x y}\right|^{2}}-\left.H_{x y}\left|=\frac{\left|H_{x y}\right|^{3}}{\mu^{2}-\left|H_{x y}\right|^{2}} \leqslant \delta\right| H_{x y}\right|^{2} \\
&\left(D_{\mu}\right)_{x x} \leqslant\left(\mu+\frac{1}{\mu}\right)+\delta
\end{aligned}
$$

Recall $H_{\mu_{0}}-D_{\mu_{0}} \succeq 0$ and $\sum_{y}\left|H_{x y}\right|^{2} \leqslant 1$. From Gershgorin circle theorem, we deduce that

$$
H \preceq\left(\mu_{0}+\frac{1}{\mu_{0}}\right)+2 \delta .
$$

The conclusion $\lambda_{1}(H) \leqslant f(\rho(B))+3 \delta$ follows easily.

Geronimus Polynomials

For the adjacency matrix A of a d-regular graph, we may have at the same time Hermitian and non-backtracking paths!

Let $\left(\mathrm{NB}_{k}\right)_{x, y}$ be the number of non-backtracking paths of length k between x and y in G : we have the matrix identities $\mathrm{NB}_{0}=I_{V}, \mathrm{NB}_{1}=A$ and for $k \geqslant 2$,

$$
\mathrm{NB}_{k+1}=\mathrm{NB}_{k} \cdot A-(d-1) \mathrm{NB}_{k-1}
$$

Geronimus Polynomials

It follows that for a monic polynomial of degree k of A :

$$
\mathrm{NB}_{k}=G_{k}(A)
$$

From the three-terms recurrence relation:

$$
G_{k+1}(\lambda)=\lambda G_{k}(\lambda)-(d-1) G_{k-1}(\lambda)
$$

we find
$G_{k}(\lambda)=(d-1)^{\frac{k}{2}} U_{k}\left(\frac{\lambda}{2 \sqrt{d-1}}\right)-(d-1)^{\frac{k}{2}-1} U_{k-2}\left(\frac{\lambda}{2 \sqrt{d-1}}\right)$,
where $U_{k}(\cos \theta)=\sin ((k+1) \theta) / \sin (\theta)$ is the Chebychev polynomial of the second kind.

Geronimus Polynomials

If A is the adjacency operator of the infinite d-regular tree, then $\left.\left(G_{k}(A) G_{\ell}(A)\right)_{x x}=\sum_{y} G_{k}(A)_{x y} G_{\ell}(A)\right)_{x y}=d(d-1)^{k-1} \mathbf{1}(k=\ell)$. since $G_{k}(A)_{x y} \in\{0,1\}$ is 1 is x and y are at distance k.

Geronimus Polynomial

The spectral measure of the adjacency operator A of the d-regular tree is defined by, for all $k \in \mathbb{N}$,

$$
\int \lambda^{k} d \mu(\lambda)=\left(A^{k}\right)_{x x}
$$

In particular,

$$
\left(G_{k}(A) G_{\ell}(A)\right)_{x x}=d(d-1)^{k-1} \mathbf{1}(k=\ell)=\int G_{k}(\lambda) G_{\ell}(\lambda) d \mu(\lambda)
$$

The polynomials G_{k} are thus orthogonal with respect to μ.

Kesten-McKay distribution

$$
\int \lambda^{k} d \mu=\left(A^{k}\right)_{x x}
$$

Kesten (1959): μ has support $[-2 \sqrt{d-1}, 2 \sqrt{d-1}]$ and density

$$
\frac{d}{2 \pi} \frac{\sqrt{4(d-1)-\lambda^{2}}}{d^{2}-\lambda^{2}}
$$

Some References

M. Kotani and T. Sunada (2000). Zeta functions of finite graphs. Journal of Mathematical Sciences.
A. Terras, (2010). Zeta Functions of Graphs: A Stroll through the Garden. Cambridge University Press.
F. Benaych-Georges, C. Bordenave, A. Knowles (2017). Spectral radii of sparse random matrices, arXiv:1704.02945.
N. Anantharaman, M. Sabri (2017). Quantum Ergodicity on Graphs: from spectral to spatial delocalization, arXiv:1704.02953.
C. Bordenave, B. Collins (2018). Eigenvalues of random lifts and polynomial of random permutations matrices, arXiv:1801.00876.

Fửredi-Komlós bound revisited

Spectral radius of random nonbacktracking matrices

Let $H \in M_{n}(\mathbb{C})$ be an Hermitian random matrix with independent centered entries $\left(H_{x y}\right)_{x \geqslant y}$ above the diagonal,

$$
\text { for all } x, y, \quad \mathbb{E}\left|H_{x y}\right|^{2} \leqslant \frac{1}{n} \quad \text { and } \quad \text { a.s. }-\max _{x, y}\left|H_{x y}\right| \leqslant \frac{1}{q} .
$$

Let B be the nonbactracking matrix of H. Recall $\|H\|_{2 \rightarrow \infty}=\max _{x} \sqrt{\sum_{y}\left|H_{x y}\right|^{2}}$

Theorem
Let $q^{\prime}=\min \left(q, n^{1 / 10}\right)$, with high probability,

$$
\rho(B) \leqslant 1+\frac{C}{q^{\prime}} .
$$

Spectral radius of random nonbacktracking matrices

For the Erdôs-Renyi graph with average degree d and $H=(A-\mathbb{E} A) / \sqrt{d}$, we have that $\|H\|_{2 \rightarrow \infty}^{2} \sim \max _{x} \operatorname{deg}(x) / d$ concentrates around 1 iif $q^{2}=d \gg \log n$. Then $\|H\| \leqslant 2+o(1)$. For $q^{2}=d=O(\log n)$, the bound on $\|H\|$ is off by a multiplicative factor.

In the regime $d \ll \log n$, for the non-backtracking matrix of A or H, we have $\rho(B)=O(1) \ll\|B\| \sim \max _{x} \sqrt{\operatorname{deg}(x)}$. This is an effect of the non-normality of B.

The bound on $\rho(B)$ is not optimal for $d=O(1)$.

Expected high trace method

We have for any $\ell \in \mathbb{N}$

$$
\rho(B) \leqslant\left\|B^{\ell}\right\|^{\frac{1}{\ell}}
$$

Since $\|A\|^{2}=\left\|A A^{*}\right\|$, for even k,

$$
\rho(B)^{k} \leqslant\left\|B^{k / 2}\left(B^{k / 2}\right)^{*}\right\| \leqslant \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right)
$$

We aim at, for some $k \gg \log n$,

$$
\mathbb{E} \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right) \leqslant C n^{2} k^{2}
$$

Expected high trace method

Expanding the trace

$$
\begin{aligned}
\mathbb{E} \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right) & =\mathbb{E} \sum_{e, f}\left(B^{k / 2}\right)_{e f}\left(B^{k / 2}\right)_{f e}^{*} \\
& \leqslant n^{2} \sum_{\gamma \in \mathcal{N}_{k}} n^{-(e(\gamma)-v(\gamma)+1)} q^{-(k-2 e(\gamma))}
\end{aligned}
$$

where \mathcal{N}_{k} is the set of unlabeled paths $\gamma=\left(\gamma_{0}, \ldots, \gamma_{k}\right)$ which visits each edge at least twice,

$$
\gamma_{t+1} \neq \gamma_{t-1} \text { for all } t \neq \frac{k}{2}
$$

and the boundary conditions

Expected high trace method

$$
\mathbb{E} \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right) \leqslant n^{2} \sum_{\gamma \in \mathcal{N}_{k}} n^{-(e(\gamma)-v(\gamma)+1)} q^{-(k-2 e(\gamma))},
$$

For nonbacktracking paths, we can estimate \mathcal{N}_{k} by genus $g=e-v+1$ and visited edges $k-2 e$.

Expected high trace method

Let γ in \mathcal{N}_{k} which visits $e \leqslant k / 2$ edges and v vertices. Set $g=e-v+1 \geqslant 0$. We build a reduced graph $\widehat{G}(\gamma)$ by removing inner vertices of degree 2 .

The path $\hat{\gamma}=\left(\hat{\gamma}_{0}, \ldots, \hat{\gamma}_{\hat{k}}\right)$ in the reduced graph $\widehat{G}(\gamma)$ determines the original path.
Fact: $\widehat{G}(\gamma)$ has genus $\hat{g}=g$, $\hat{e} \leqslant 3 g+1$ edges, $\hat{v} \leqslant 2 g+2$ vertices.

Expected high trace method

Let γ in \mathcal{N}_{k} which visits $e \leqslant k / 2$ edges and v vertices. Set $g=e-v+1 \geqslant 0$. We build a reduced graph $\widehat{G}(\gamma)$ by removing inner vertices of degree 2 .

The path $\hat{\gamma}=\left(\hat{\gamma}_{0}, \ldots, \hat{\gamma}_{\hat{k}}\right)$ in the reduced graph $\widehat{G}(\gamma)$ determines the original path.
Fact: $\widehat{G}(\gamma)$ has genus $\hat{g}=g, \hat{e} \leqslant 3 g+1$ edges, $\hat{v} \leqslant 2 g+2$ vertices.

Expected high trace method

The reduced graph $\widehat{G}(\gamma)$ has $\hat{e} \leqslant 3 g+1$ edges and $\hat{v} \leqslant 2 g+2$ vertices:

We have $2 \hat{e}=\sum_{x} \operatorname{deg}(x)$. Since all but two vertices have degree at least 3:

$$
\begin{gathered}
2 \hat{e} \geqslant 3(\hat{v}-2)+2=3 \hat{v}-4 \\
2 \hat{e}-2 \hat{v}+2=2 \hat{g}=2 g
\end{gathered}
$$

we get $\hat{v} \leqslant 2 g+2$.

Consequently, $\hat{e}=\hat{g}+v-1 \leqslant 3 g+1$.

Expected high trace method

The number of reduced paths $\hat{\gamma}=\left(\hat{\gamma}_{0}, \ldots, \hat{\gamma}_{\hat{k}}\right)$ of length \hat{k} with genus g is at most

$$
\hat{e}^{\hat{k}} \hat{v}^{\hat{e}}
$$

(at each time $1 \leqslant s \leqslant \hat{k}$, we choose one of the $\hat{e} \leqslant 3 g+1$ edges and choose the end vertex of each new edge).

Moreover, since $k-2 e=\sum_{e}\left(m_{e}-2\right)$,

$$
k-2 e \geqslant \hat{k}-2 \hat{e} \geqslant k-6 g .
$$

Expected high trace method

The number of reduced paths $\hat{\gamma}=\left(\hat{\gamma}_{0}, \ldots, \hat{\gamma}_{\hat{k}}\right)$ of length \hat{k} with genus g is at most

$$
\hat{e}^{\hat{k}} \hat{v}^{\hat{e}} \leqslant(3 g+1)^{\hat{k}}(2 g+2)^{3 g+1},
$$

(at each time $1 \leqslant s \leqslant \hat{k}$, we choose one of the $\hat{e} \leqslant 3 g+1$ edges and choose the end vertex of each new edge).

Moreover, since $k-2 e=\sum_{e}\left(m_{e}-2\right)$,

$$
k-2 e \geqslant \hat{k}-2 \hat{e} \geqslant k-6 g
$$

Expected high trace method

The number of reduced paths $\hat{\gamma}=\left(\hat{\gamma}_{0}, \ldots, \hat{\gamma}_{\hat{k}}\right)$ of length \hat{k} with genus g is at most

$$
\hat{e}^{\hat{k}} \hat{v}^{\hat{e}} \leqslant(3 g+1)^{\hat{k}}(2 g+2)^{3 g+1},
$$

(at each time $1 \leqslant s \leqslant \hat{k}$, we choose one of the $\hat{e} \leqslant 3 g+1$ edges and choose the end vertex of each new edge).

Moreover, since $k-2 e=\sum_{e}\left(m_{e}-2\right)$,

$$
k-2 e \geqslant \hat{k}-2 \hat{e} \geqslant k-6 g
$$

Expected high trace method

We estimate the number of paths $\gamma \in \mathcal{N}_{k}$ associated to a reduced path $\hat{\gamma}$.

If n_{i} is the number of edges in $G(\gamma)$ associated to the i-th edge of $\widehat{G}(\gamma)$ and $m_{i} \geqslant 2$ its multiplicity, we have

$$
\sum_{i=1}^{\hat{e}} n_{i} m_{i}=k
$$

Hence, our number is at most the number of positive integer vectors $\left(p_{i}\right)$ such that $\sum_{i} p_{i} \geqslant k$:

$$
\binom{k-1}{\hat{e}-1} \leqslant\left(\frac{3(k-1)}{\hat{e}-1}\right)^{\hat{e}-1} \leqslant\left(\frac{k}{g}\right)^{3 g} .
$$

Expected high trace method

We estimate the number of paths $\gamma \in \mathcal{N}_{k}$ associated to a reduced path $\hat{\gamma}$.

If n_{i} is the number of edges in $G(\gamma)$ associated to the i-th edge of $\widehat{G}(\gamma)$ and $m_{i} \geqslant 2$ its multiplicity, we have

$$
\sum_{i=1}^{\hat{e}} n_{i} m_{i}=k
$$

Hence, our number is at most the number of positive integer vectors $\left(p_{i}\right)$ such that $\sum_{i} p_{i} \geqslant k$:

$$
\binom{k-1}{\hat{e}-1} \leqslant\left(\frac{3(k-1)}{\hat{e}-1}\right)^{\hat{e}-1} \leqslant\left(\frac{k}{g}\right)^{3 g} .
$$

Expected high trace method

We estimate the number of paths $\gamma \in \mathcal{N}_{k}$ associated to a reduced path $\hat{\gamma}$.

If n_{i} is the number of edges in $G(\gamma)$ associated to the i-th edge of $\widehat{G}(\gamma)$ and $m_{i} \geqslant 2$ its multiplicity, we have

$$
\sum_{i=1}^{\hat{e}} n_{i} m_{i}=k
$$

Hence, our number is at most the number of positive integer vectors $\left(p_{i}\right)$ such that $\sum_{i} p_{i} \geqslant k$:

$$
\binom{k-1}{\hat{e}-1} \leqslant\left(\frac{3(k-1)}{\hat{e}-1}\right)^{\hat{e}-1} \leqslant\left(\frac{k}{g}\right)^{3 g} .
$$

Expected high trace method

Finally,

$$
\begin{aligned}
& \mathbb{E} \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right) \leqslant n^{2} \sum_{\gamma \in \mathcal{N}_{k}} n^{-(e(\gamma)-v(\gamma)+1)} q^{-(k-2 e(\gamma))} \\
& \quad \leqslant n^{2} \sum_{g=0}^{\infty} n^{-g} \sum_{\hat{k}=g}^{k} q^{-(\hat{k}-6 g)}\left(\frac{k}{g}\right)^{3 g}(3 g+1)^{\hat{k}}(2 g+2)^{3 g+1}
\end{aligned}
$$

The computation is then straightforward: we find, if $k \leqslant c \min \left(q \log n, n^{0.33} q^{-2}\right)$,

$$
\mathbb{E} \operatorname{Tr}\left(B^{k / 2}\left(B^{k / 2}\right)^{*}\right) \leqslant C n^{2} k^{2}
$$

Remarks

The same argument works for inhomogeneous Wigner matrices with bounded row variances:
for all $x, \quad \mathbb{E} \sum_{y}\left|H_{x y}\right|^{2} \leqslant 1 \quad$ and \quad a.s. $-\max _{x, y}\left|H_{x y}\right| \leqslant \frac{1}{q}$.

Provided that max $\mathbb{E}\left|H_{x y}\right|^{2}$ is not too large.

Some References

J. Friedman (1991).On the second eigenvalue and random walks in random d-regular graphs, Combinatorica.
S. Sodin (2007) Random matrices, nonbacktracking walks, and orthogonal polynomials. J. Math. Phys., 48(12):123503, 21, 2007.
F. Benaych-Georges, C. Bordenave, A. Knowles (2017). Spectral radii of sparse random matrices, arXiv:1704.02945.

Diluted Random matrices

Diluted Random matrices

We will now study random matrices with $O(1)$ non-zero entries on each row. For example, adjacency matrix of a random 4-regular graph on n vertices.

For the random matrices of interest, classical expected high trace method will not work properly, even when applied to nonbacktracking matrices.

Two extra technical problems: usually, we cannot recenter easily the entries of the matrices, and for many models of interest, the entries are not independent.

Uniform Regular graphs

Regular graph

For $2 \leqslant d \leqslant n-1$ and $n d$ even, the set $\mathcal{G}(n, d)$ of d-regular graphs on the vertex set $\{1, \ldots, n\}$ is not empty.

A uniform d-regular graph on n is a random graph sampled according to the uniform distribution on $\mathcal{G}(n, d)$.

Eigenvalues

Consider the adjacency matrix A of a d-regular graph on n vertices with eigenvalues

$$
d=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}
$$

(we have $A \mathbf{1}=d \mathbf{1}$).

Recall that

$$
\mu_{A}=\frac{1}{n} \sum_{k} \delta_{\lambda_{k}}
$$

is the empirical distribution of eigenvalues.

Kesten-McKay distribution

The spectral measure μ_{d} of the infinite d-regular tree \mathcal{T}_{d} is

$$
\int \lambda^{k} d \mu_{d}=\left(A_{\mathcal{T}_{d}}^{k}\right)_{x x}
$$

Kesten (1959): μ_{d} has support $[-2 \sqrt{d-1}, 2 \sqrt{d-1}]$ and density

$$
\frac{d}{2 \pi} \frac{\sqrt{4(d-1)-\lambda^{2}}}{d^{2}-\lambda^{2}}
$$

Empirical distribution of eigenvalues

Theorem (McKay (1981))
Let $d \geqslant 2$ and $G=G_{n}$ a sequence of d-regular graphs on n vertices. Assume that for any integer ℓ, the number of cycles of length ℓ in G is $o(n)$. Then, if A is the adjacency matrix of G, weakly,

$$
\lim _{n \rightarrow \infty} \mu_{A}=\mu_{d}
$$

We may apply this result to a uniform d-regular graph on n vertices.

McKay Theorem

Take $d=4, n=2000$ and G a uniformly sampled d-regular graph.

McKay Theorem

Let G be a d-regular graph on n vertices and A its adjacency matrix. For any fixed ℓ, the nb of cycles of length $\leqslant \ell$ is $C_{\ell}=o(n)$.

If a vertex x is at distance at least k to any cycle of length at most $2 k$, then the k-neighborhood of x is a d-regular tree of depth k. In particular,

$$
\left(A^{k}\right)_{x x}=\left(A_{\mathcal{T}_{d}}^{k}\right)_{o o}=\int \lambda^{k} d \mu_{d}
$$

The number of such vertices is at least $n-C_{k} k(d-1)^{k}$.

$$
\left|\frac{1}{n} \operatorname{Tr} A^{k}-\int \lambda^{k} d \mu_{d}\right|=\left|\frac{1}{n} \sum_{x}\left(A^{k}\right)_{x x}-\int \lambda^{k} d \mu_{d}\right| \leqslant \frac{C_{k} k(d-1)^{k} d^{k}}{n}=o(1) .
$$

Alon-Boppana lower bound

Consider the adjacency matrix A of a d-regular graph on n vertices with eigenvalues

$$
d=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}
$$

Theorem (Alon - Boppana (1986), Mohar (2010))
For any d-regular on n vertices,

$$
\lambda_{2} \geqslant 2 \sqrt{d-1}-\frac{c_{d}}{(\log n)^{2}}
$$

The spectral radius of $A_{\mathcal{T}_{d}}$ is a lower bound on λ_{2}.

Alon-Boppana lower bound

Every graph has a uninversal covering tree $\mathcal{T}=(\mathcal{V}, \mathcal{E})$

A construction of \mathcal{T} : take $o \in G, \mathcal{V}$ is the set of all nonbacktracking paths $\left(x_{0}, \cdots, x_{k}\right)$ starting from $x_{0}=o$ $\left(x_{i-1} \neq x_{i+1}\right)$. Two paths share an edge if one is the largest prefix of the other.

Alon-Boppana lower bound

Weaker result on $\lambda_{\star}=\max _{i \geqslant 2}\left|\lambda_{i}\right|=\lambda_{2} \vee\left(-\lambda_{n}\right)$.

The universal covering tree of G is \mathcal{T}_{d}.

The nb of closed walks starting from x in G of length k is at least the nb of closed walks starting from the root in \mathcal{T}_{d} of length k :

$$
\frac{1}{n} \operatorname{Tr}\left(A^{k}\right)=\frac{1}{n} \sum_{x}\left(A^{k}\right)_{x x} \geqslant\left(A^{k}\right)_{o o}=\int \lambda^{k} d \mu_{d}
$$

For k even,

$$
\int \lambda^{k} d \mu_{d} \geqslant \frac{c}{k^{3 / 2}}(2 \sqrt{d-1})^{k}
$$

Alon-Boppana lower bound

For even k,

$$
\operatorname{Tr}\left(A^{k}\right)=\sum_{j} \lambda_{j}^{k} \leqslant d^{k}+n \lambda_{\star}^{k}
$$

So finally,

$$
\frac{c}{k^{3 / 2}}(2 \sqrt{d-1})^{k} \leqslant \frac{d^{k}}{n}+\lambda_{\star}^{k}
$$

Take $k=\log _{d} n$.

Replacing λ_{\star} by λ_{2} requires a refinement of this strategy (without trace).

Ramanujan graphs

Let G be a d-regular graph on n vertices. Consider its adjacency matrix A

$$
d=\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}
$$

$\lambda_{n}=-d$ is equivalent to G bipartite.

The largest non-trivial eigenvalue is

$$
\lambda_{\star}=\max _{i}\left\{\left|\lambda_{i}\right|:\left|\lambda_{i}\right| \neq d\right\} .
$$

G is Ramanujan if

$$
\lambda_{\star} \leqslant 2 \sqrt{d-1}
$$

Ramanujan $=$ non trivial eigenvalues bounded by the spectral radius of the adjacency operator of the universal covering tree.

Alon's conjecture (1986)

Theorem (Friedman (2008))
Fix an integer $d \geqslant 3$. Let G_{n} is a sequence of uniformly distributed d-regular graphs on n vertices, then with high probability,

$$
\lambda_{2} \vee\left|\lambda_{n}\right| \leqslant 2 \sqrt{d-1}+o(1)
$$

Most regular graphs are nearly Ramanujan!

We can take $o(1)=c(\log \log n) /(\log n)^{2}$.

Expected high trace method

If A is the adjacency matrix of G_{n} we would like to prove that for even $k \gg \log n$,

$$
d^{k}+\lambda_{2}^{k}+\lambda_{n}^{k} \leqslant \operatorname{Tr}\left(A^{k}\right) \stackrel{?}{\leqslant} d^{k}+n(2 \sqrt{d-1}+o(1))^{k} .
$$

Friedman's Theorem would follow.

Since $A \mathbf{1}=d \mathbf{1}$, it is wiser to project orthogonally on $\mathbf{1}^{\perp}$:

$$
\operatorname{Tr}\left(A^{k}\right)-d^{k}=\operatorname{Tr}\left(A-\frac{d}{n} \mathbf{1 1}^{*}\right)^{k} \stackrel{?}{\leqslant} n(2 \sqrt{d-1}+o(1))^{k} .
$$

EXpected high trace method

For a first moment estimate, we would aim at

$$
\mathbb{E} \operatorname{Tr}\left(A^{k}\right)-d^{k}=\mathbb{E} \operatorname{Tr}\left(A-\frac{d}{n} \mathbf{1 1}^{*}\right)^{k} \stackrel{?}{\leqslant} n(2 \sqrt{d-1}+o(1))^{k}
$$

for $k \gg \log n$.

This is wrong!

The probability that the graph contains K_{d+1} as subgraph is at least n^{-c}. On this event $\lambda_{2}=d$. Hence, for even $k \gg \log n$,

$$
\mathbb{E} \operatorname{Tr}\left(A-\frac{d}{n} \mathbf{1 1}^{*}\right)^{k} \geqslant n^{-c} d^{k} \gg n(2 \sqrt{d-1}+o(1))^{k}
$$

Subgraphs which have polynomially small probability compromise the expected high trace method. Called Tangles.

Strategy

1. Use the nonbacktracking matrix B instead of A.
2. Remove the tangles.
3. Project on $\mathbf{1}^{\perp}$.
4. Use the expected high trace method to evaluate the remainder terms.

Nonbacktracking matrix

Oriented edge set :

$$
\vec{E}=\{(x, y):\{x, y\} \in E\}
$$

Consider the matrix B acting on $\mathbb{R}^{\vec{E}}$ with entries

$$
B_{e f}=\mathbf{1}(y=a) \mathbf{1}(x \neq b)
$$

where $e=(x, y)$ and $f=(a, b)$.

Nonbacktracking version of Alon's conjecture

Complex eigenvalues, $|\vec{E}|=n d$,

$$
d-1=\mu_{1} \geqslant\left|\mu_{2}\right| \geqslant \cdots \geqslant\left|\mu_{n d}\right| .
$$

Using the Hashimoto-Ihara-Bass identities:

Theorem (Friedman (2008))
Fix an integer $d \geqslant 3$. Let G_{n} is a sequence of uniformly distributed d-regular graphs on n vertices, then with high probability,

$$
\left|\mu_{2}\right| \leqslant \sqrt{d-1}+o(1)
$$

Configuration model

The oriented edge set $\vec{E},|\vec{E}|=n d$ is written as, with $V=\{1, \ldots, n\}$,

$$
\vec{E}=V \times\{1, \ldots, d\}
$$

A matching σ on \vec{E} defines a multigraph $G=G(\sigma)$ where a matching is a permutation such that $\sigma^{2}(x)=x$ and $\sigma(x) \neq x$.

Configuration model

We take σ a uniform random matching on \vec{E}.

Conditioned on the multigraph $G=G(\sigma)$ to be simple, $G(\sigma)$ is uniformly distributed on $\mathcal{G}(n, d)$, d-regular graphs on $V=\{1, \ldots, n\}$.

The probability for $G=G(\sigma)$ to be simple is lower bounded uniformly in n.

Since $\mathbb{P}\left(E^{c} \mid F\right) \leqslant \mathbb{P}\left(E^{c}\right) / \mathbb{P}(F)$, it is enough to prove Friedman's Theorem for the configuration model.

Configuration model

The nonbacktracking matrix with $f=(y, i)$,

$$
B_{e f}=\mathbf{1}(\sigma(e)=(y, j) \text { for some } j \neq i)
$$

can be written as

$$
B=M N
$$

where

$$
N_{e f}=\mathbf{1}\left(e_{1}=f_{1}, e \neq f\right)=N_{f e}
$$

and M is the permutation matrix associated to σ,

$$
M_{e f}=\mathbf{1}(\sigma(e)=f)=M_{f e}
$$

Restricted spectral Radius

Since $B \mathbf{1}=B^{*} \mathbf{1}=(d-1) \mathbf{1},\left|\mu_{2}\right|$ is the spectral radius of $B_{\mathbf{1}^{\perp}}$.

For any integer ℓ, the second largest eigenvalue of B is thus bounded by

$$
\left|\mu_{2}\right|^{\ell} \leqslant \max _{v:\langle\mathbf{1}, v\rangle=0} \frac{\left\|B^{\ell} v\right\|_{2}}{\|v\|_{2}}
$$

We prove if σ is a uniform random matching that with high probability

$$
\max _{v:\langle\mathbf{1}, v\rangle=0} \frac{\left\|B^{\ell} v\right\|_{2}}{\|v\|_{2}} \leqslant(\log n)^{c}(d-1)^{\ell / 2}
$$

with $\ell \simeq \log n$.

Path decomposition

Recall $M_{e f}=\mathbf{1}(\sigma(e)=f), N_{e f}=\mathbf{1}\left(e_{1}=f_{1}, e \neq f\right)$

$$
B_{e f}^{\ell}=\left((M N)^{\ell}\right)_{e f}=\sum_{\gamma \in \Gamma_{e f}^{\ell}} \prod_{s=1}^{\ell} M_{\gamma_{2 s-1} \gamma_{2 s}}
$$

where $\Gamma_{e f}^{\ell}$ is the set of paths $\gamma=\left(\gamma_{1}, \ldots, \gamma_{2 \ell+1}\right) \in(\vec{E})^{2 \ell+1}$ such that $\gamma_{1}=e, \gamma_{2 k+1}=f$ and $N_{\gamma_{2 s} \gamma_{2 s+1}}=1$.

Path decomposition

$$
B_{e f}^{\ell}=\sum_{\gamma \in \Gamma_{e f}^{\ell}} \prod_{s=1}^{\ell} M_{\gamma_{2 s-1} \gamma_{2 s}}
$$

The set of paths $\Gamma_{e f}^{\ell}$ is independent of σ : combinatorial part.

The summand is the probabilistic part.

$\gamma=(1,1)(1,2)(1,1)(2,2)(2,1)(3,1)(3,2)(4,1)(4,2)(3,3)(3,2)(4,1)(4,2)(5,1)(5,2)(2,3)(2,1)(3,1)$

Path decomposition

$$
B_{e f}^{\ell}=\left((M N)^{\ell}\right)_{e f}=\sum_{\gamma \in \Gamma_{e f}^{\ell}} \prod_{s=1}^{\ell} M_{\gamma_{2 s-1} \gamma_{2 s}}
$$

The projection of M on $\mathbf{1}^{\perp}$ is,

$$
\underline{M}=M-\frac{\mathbf{1 1}}{n d} .
$$

Hence, if $\langle v, \mathbf{1}\rangle=0$, we get

$$
B^{\ell} v=\underline{B}^{\ell} v
$$

where $\underline{B}=\underline{M} N$ and

$$
\underline{B}_{e f}^{\ell}=\left((\underline{M} N)^{\ell}\right)_{e f}=\sum_{\gamma \in \Gamma_{e f}^{\ell}} \prod_{s=1}^{\ell} \underline{M}_{\gamma_{2 s-1} \gamma_{2 s}} .
$$

Tangles

A multi-graph (or a path) is tangle-free if it contains at most one cycle.

A multi-graph (or a path) is ℓ-tangle-free if all vertices have at most at most one cycle in their ℓ-neighborhood.

We denote by $F_{e f}^{\ell}$ the subset of tangle-free paths $\Gamma_{e f}^{\ell}$.

Path Decomposition

Assume that $G=G(\sigma)$ is ℓ-tangle-free. Then, for $0 \leqslant k \leqslant \ell$,

$$
B^{k}=B^{(k)},
$$

where

$$
\left(B^{(k)}\right)_{e f}=\sum_{\gamma \in F_{e f}^{k}} \prod_{s=1}^{k} M_{\gamma_{2 s-1} \gamma_{2 s}}
$$

Recall $\underline{M}=M-\mathbf{1 1}^{*} /(n d)$. For $0 \leqslant k \leqslant \ell$, we define the "projected" matrix

$$
\left(\underline{B}^{(k)}\right)_{e f}=\sum_{\gamma \in F_{e f}^{k}} \prod_{s=1}^{k} \underline{M}_{\gamma_{2 s-1} \gamma_{2 s}} .
$$

Path Decomposition

Beware that $\underline{B}^{k} \neq \underline{B}^{(k)}$, this is only approximately true!

Since $M_{e f}=\underline{M}_{e f}+1 /(n d)$,
$\left(B^{(\ell)}\right)_{e f}=\left(\underline{B}^{(\ell)}\right)_{e f}+\sum_{\gamma \in F_{e f}^{\ell}} \sum_{k=1}^{\ell} \prod_{s=1}^{k-1} \underline{M}_{\gamma_{2 s-1} \gamma_{2 s}}\left(\frac{1}{n d}\right) \prod_{k+1}^{\ell} M_{\gamma_{2 s-1} \gamma_{2 s}}$,
which follows from the identity,

$$
\prod_{s=1}^{\ell} x_{s}=\prod_{s=1}^{\ell} y_{s}+\sum_{k=1}^{\ell} \prod_{s=1}^{k-1} y_{s}\left(x_{k}-y_{k}\right) \prod_{k+1}^{\ell} x_{s}
$$

Path Decomposition

A path $\gamma \in F_{e f}^{\ell}$ can be decomposed as the union of

$$
\gamma^{\prime} \in F_{e a}^{k-1}, \quad \gamma^{\prime \prime} \in F_{a b}^{1} \quad \text { and } \quad \gamma^{\prime \prime \prime} \in F_{b f}^{\ell-k}
$$

with $a=\gamma_{2 k-1}, b=\gamma_{2 k+1}$.

Path Decomposition

For any e, f, we have $\left|\Gamma_{e f}^{1}\right|=(d-1)$. We find
$\sum_{\gamma \in F_{e f}^{\ell}} \prod_{s=1}^{k-1} \underline{M}_{\gamma_{2 s-1} \gamma_{2 s}} \prod_{k+1}^{\ell} M_{\gamma_{2 s-1} \gamma_{2 s}}=(d-1)\left(\underline{B}^{(k-1)} \mathbf{1 1}^{*} B^{(\ell-k)}\right)_{e f}-\left(R_{k}^{(\ell)}\right)_{e f}$
where $\left(R_{k}^{(\ell)}\right)_{\text {ef }}$ sums tangle-free paths whose union is tangled:

Path Decomposition

So finally,

$$
B^{(\ell)}=\underline{B}^{(\ell)}+\frac{d-1}{n d} \sum_{k=1}^{\ell} \underline{B}^{(k-1)} \mathbf{1 1}^{*} B^{(\ell-k)}-\frac{1}{n d} \sum_{k=1}^{\ell} R_{k}^{(\ell)}
$$

Hence, if $\mathbf{1}^{*} v=\langle v, \mathbf{1}\rangle=0$ and $G=G(\sigma)$ is ℓ-tangle-free, since $\mathbf{1}^{*} B^{(\ell-k)}=\mathbf{1}^{*} B^{\ell-k}=(d-1)^{\ell-k} \mathbf{1}^{*}$,

$$
B^{(\ell)} v=\underline{B}^{(\ell)} v-\frac{1}{n d} \sum_{k=1}^{\ell} R_{k}^{(\ell)} v
$$

Path Decomposition

We arrive at

$$
\left|\mu_{2}\right|^{\ell} \leqslant \max _{v:\{\mathbf{1}, v\rangle=0} \frac{\left\|B^{\ell} v\right\|_{2}}{\|v\|_{2}} \leqslant\left\|\underline{B}^{(\ell)}\right\|+\frac{1}{n d} \sum_{k=1}^{\ell}\left\|R_{k}^{(\ell)}\right\| .
$$

This inequality holds if $G(\sigma)$ is ℓ tangle-free.

Fact: For uniform random $\sigma, G(\sigma)$ is ℓ tangle-free with high probability for $\ell=0.1 \log n / \log (d-1)$. (Lubetzky-Sly (2010))

Expected high trace method

$$
\left|\mu_{2}\right|^{\ell} \leqslant\left\|\underline{B}^{(\ell)}\right\|+\frac{1}{n d} \sum_{k=1}^{\ell}\left\|R_{k}^{(\ell)}\right\| .
$$

Our aim is then to prove that with high probability

$$
\left\|\underline{B}^{(\ell)}\right\| \leqslant(\log n)^{c}(d-1)^{\ell / 2} \quad \text { and } \quad\left\|R_{k}^{(\ell)}\right\| \leqslant(\log n)^{c}(d-1)^{\ell-k / 2}
$$

By estimating, for $S=\underline{B}^{(\ell)}$ or $S=R_{k}^{(\ell)}$.

$$
\mathbb{E}\|S\|^{2 k} \leqslant \mathbb{E} \operatorname{Tr}\left(S S^{*}\right)^{k}
$$

with $k \simeq \log n /(\log \log n)$: on the overall paths of length $2 \ell k \gg \log n$.

Expected high trace method

For $S=\underline{B}^{(\ell)}$,

$$
\mathbb{E}\|S\|^{2 k} \leqslant \mathbb{E} \operatorname{Tr}\left(S S^{*}\right)^{k} \leqslant \sum_{\gamma} \mathbb{E} \prod_{i=1}^{2 k} \prod_{t=1}^{\ell} \underline{M}_{\gamma_{i, 2 t-1} \gamma_{i, 2 t}}
$$

The path $\gamma=\left(\gamma_{i, t}\right)$ is made of $2 k$ tangle-free paths of length ℓ. To control the nb of such paths with a given genus and given number of vertices, we use crucially the fact that each γ_{i} visits at most one cycle in the reduced graph of $G(\gamma)$.

Expected high trace method

For $S=\underline{B}^{(\ell)}$,

$$
\mathbb{E}\|S\|^{2 k} \leqslant \mathbb{E} \operatorname{Tr}\left(S S^{*}\right)^{k} \leqslant \sum_{\gamma} \mathbb{E} \prod_{i=1}^{2 k} \prod_{t=1}^{\ell} \underline{M}_{\gamma_{i, 2 t-1} \gamma_{i, 2 t}}
$$

Recall $\underline{M}_{e f}=M_{e f}-1 /(d n)$. The probabilistic part relies on the claim: for $T \leqslant \sqrt{d n}$ and any $\left(e_{t}, f_{t}\right)_{t} \in \vec{E}^{2 T}$,

$$
\left|\mathbb{E} \prod_{t=1}^{T}\left(M_{e_{t} f_{t}}-\frac{1}{d n}\right)\right| \leqslant c\left(\frac{1}{d n}\right)^{a}\left(\frac{3 T}{\sqrt{d n}}\right)^{a_{1}}
$$

where a is the nb of distinct unordered pairs $\left\{e_{t}, f_{t}\right\}$ and a_{1} is the nb of pairs appearing exactly once.

Some References

J. Friedman (2008). A proof of Alon's second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc.
C. Bordenave (2015). A new proof of Friedman's second eigenvalue Theorem and its extension to random lifts. ArXiv:1502.04482.
L. Massoulié (2014). Community detection thresholds and the weak Ramanujan property. STOC '14.

Non-backtracking spectrum of Erdôs-Renyi graphs

Non-backtracking spectrum of Erdôs-Renyi graphs

Eigenvalues of B for an Erdős-Rényi graph with average degree $d=4$ and $n=500$ vertices.

Erdớs-Rényi Graph

Let B be the nonbacktracking matrix of the adjacency matrix A, with eigenvalues

$$
\mu_{1} \geqslant\left|\mu_{2}\right| \geqslant \cdots
$$

Theorem

Let $d>1$ and G_{n} be an Erdös-Rényi graph with average degree d. With high probability,

$$
\begin{aligned}
\mu_{1} & =d+o(1) \\
\left|\mu_{2}\right| & \leqslant \sqrt{d}+o(1)
\end{aligned}
$$

Erdôs-Rényi Graph

The bound $\left|\mu_{2}\right| \leqslant \sqrt{d}+o(1)$ is a Ramanujan property: the spectral radius of the nonbacktracking operator of the universal covering tree of G_{n} is $\sqrt{d}+o(1)$.

There is an analog result for the stochastic block model (inhomogeneous Erdős-Rényi random graphs with finite number of classes).

The proof follows the same strategy. The path decomposition is much more involved, the eigenvector associated to μ_{1} is genuinely random.

Strong asymptotic freeness of uniform permutations

Algebra of Permutation matrices

Let $\sigma_{1}, \ldots, \sigma_{q}$ permutations on $\{1, \ldots, n\}$.
Let S_{1}, \ldots, S_{q} their permutation matrices:

$$
\left(S_{i}\right)_{x y}=\mathbf{1}\left(\sigma_{i}(x)=y\right)
$$

For a given non-commutative polynomial P, we consider the matrix in $M_{n}(\mathbb{C})$

$$
P=P\left(S_{1}, \ldots, S_{q}, S_{1}^{*}, \ldots, S_{q}^{*}\right)
$$

Examples : $P=S_{1} S_{2}^{2} S_{1}^{*}-S_{3} S_{1}^{*} S_{3}$ or $P=S_{1}+S_{2}+S_{1}^{*}+S_{2}^{*}$ (adjacency matrix of 4-regular graph).

Strong convergence of random permutations

The constant vector $\mathbf{1}$ is an eigenvector of P and P^{*}.

The operator norm of P on $\mathbf{1}^{\perp}$ is

$$
\left\|P_{\mid \mathbf{1}^{\perp}}\right\|=\sup _{f \in \mathbf{1}^{\perp}} \frac{\|P f\|_{2}}{\|f\|_{2}} .
$$

What is the value of $\left\|P_{\mathbf{1}^{\perp}}\right\|$ when n is large and $\sigma_{1}, \ldots, \sigma_{q}$ uniform random permutations?

Algebra of the free group

Let X be the free group with q generators g_{1}, \ldots, g_{q} and their inverses.

Consider the operator on $\ell^{2}(X)$,

$$
P_{\star}=P\left(\lambda\left(g_{1}\right), \ldots, \lambda\left(g_{q}\right), \lambda\left(g_{1}^{-1}\right), \ldots, \lambda\left(g_{q}^{-1}\right)\right),
$$

where $\lambda(\cdot)$ is the left-regular representation (left multiplication).

Strong asymptotic freeness

$$
\begin{gathered}
P=P\left(S_{1}, \ldots, S_{q}, S_{1}^{*}, \ldots, S_{q}^{*}\right) . \\
\|T\|=\sup _{f \neq 0} \frac{\|T f\|_{2}}{\|f\|_{2}} .
\end{gathered}
$$

Theorem

Let S_{1}, \cdots, S_{q} be independent uniform permutation matrices in \mathcal{S}_{n}. Then with high probability, as $n \rightarrow \infty$,

$$
\left\|P_{\mid \mathbf{1}^{\perp}}\right\|=\left\|P_{\star}\right\|+o(1) .
$$

Strategy

Set $i^{*}=i+q, i^{* *}=i$ and $S_{i^{*}}=S_{i}^{*}$.

Linearization trick: it is enough to consider symmetric linear polynomials with matrix coefficients :

$$
A=a_{0}+\sum_{i=1}^{2 q} a_{i} \otimes S_{i}
$$

where $a_{i} \in M_{k}(\mathbb{C})$ et $a_{i^{*}}=a_{i}^{*}$.

Claim: the convergence of the spectra of such matrices A implies the convergence of the operator norm of all non-commutative polynomial P.

Strategy

Nonbacktracking: we introduce the nonbactracking matrix with matrix coefficients:

$$
B=\sum_{(i, j): i \neq j^{*}} a_{i} \otimes S_{i} \otimes E_{i j} .
$$

Claim: the convergence of the spectral radii of all nonbactracking matrices implies the convergence of the spectrum of A (Extensions of Hashimoto-Ihara-Bass identities).

To deal with nonbactracking matrix with matrix coefficients, we adapt the strategy used in the proof for the uniform regular graphs: removing tangles / projection / expected high trace method. This is more involved, due to the matrices a_{i}.

Remarks

Extend to tensor products: polynomial in $S_{i} \otimes S_{i}$ and other random unitary matrices.

The matrix $A=\sum_{i=1}^{2 q} a_{i} \otimes S_{i}$ is a random n-lift if $a_{i}=E_{x_{i}, y_{i}} \in M_{k}(\mathbb{C}): A_{1}=\sum_{i}\left(a_{i}+a_{i}^{*}\right)$. is the adjacency matrix of a graph with k vertices and q edges.

The convergence of the non-trivial eigenvalues of A is a generalization of Alon's conjecture to random n-lifts.

Remarks

Extend to tensor products: polynomial in $S_{i} \otimes S_{i}$ and other random unitary matrices.

The matrix $A=\sum_{i=1}^{2 q} a_{i} \otimes S_{i}$ is a random n-lift if $a_{i}=E_{x_{i}, y_{i}} \in M_{k}(\mathbb{C}): A_{1}=\sum_{i}\left(a_{i}+a_{i}^{*}\right)$. is the adjacency matrix of a graph with k vertices and q edges.

The convergence of the non-trivial eigenvalues of A is a generalization of Alon's conjecture to random n-lifts.

Remarks

Extend to tensor products: polynomial in $S_{i} \otimes S_{i}$ and other random unitary matrices.

The matrix $A=\sum_{i=1}^{2 q} a_{i} \otimes S_{i}$ is a random n-lift if $a_{i}=E_{x_{i}, y_{i}} \in M_{k}(\mathbb{C}): A_{1}=\sum_{i}\left(a_{i}+a_{i}^{*}\right)$. is the adjacency matrix of a graph with k vertices and q edges.

The convergence of the non-trivial eigenvalues of A is a generalization of Alon's conjecture to random n-lifts.

Concluding words

Thank you for your attention !

