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THE NONBACKTRACKING MATRIX



NONBACKTRACKING MATRIX

Let H be a matrix in M,(C).

Consider the matrix B in M,,2(C) with entries
Bef = Habl(y = a,)l(x 7é b)7

where e = (z,y) and f = (a,b).

®
L,
Il ®
Y
®

Beware that if H is Hermitian, B is not ! (not even normal).

Hashimoto (1989).



NONBACKTRACKING MATRIX ON A GRAPH

Variant: H is a matrix in M, (C) whose non-zeros entries (x,y)
are edges of an undirected graph G = (V, E') with vertices
V ={1,---,n} and edges E C {{z,y}:z,y € V}.

Then, the set of oriented edges of G is

E={(x,y) : {w,y} € B}

Define the matrix B which acts on £ and with entries

Bef = Habl(y = CL)]_(.’E 7é b)7

where e = (z,y) and f = (a,b) in E.

The two definitions of B coincides: F' = span(d(,, : {7,y} ¢ F)
1s invariant by B and B* and Bjp =0, Bjp. = B.



NONBACKTRACKING MATRIX AND GEODESICS

For any k € N,

ef - Z H H%“/tﬂ

v t=1
where the sum is over nonbacktracking paths from e to f of
length &+ 1, i.e. paths (y0,71,-.-,7k+1) such that (y9,71) =€
(Vis Yk+1) = f and -1 # Ye+1. This is a discrete geodesic.

On a tree, nonbacktracking paths are shortest paths.



NONBACKTRACKING SPECTRAL IDENTITIES

Despite its non-normality, due to its strong geometric flavour,

nonbacktracking matrices are often easier to study.
There exists a familly of identities between eigenvalues and
eigenvectors of a matrix and eigenvalues and eigenvectors of

nonbacktracking matrices.

It allows to study the spectrum of matrix through its

nonbactracking spectrum.

We will follow this strategy for computing largest eigenvalues.



HasHIMOTO-IHARA-BASS IDENTITY

Assume that A € M,,(C) is the adjacency matrix of a graph
G = (V,E).

Let @ be the diagonal matrix : ., = deg(x) — 1. We have

det(zI5—B) = (22— 1)IFI=Vldet(:*Iy — Az + Q).

If G is a d-regular graph, that is for all z € V', deg(z) = d, then
Q = (d—1)Iy and

o(B) = {1} U{p:p®> — i+ (d—1)=0avec A € o(A)}.



FROM NONBACKTRACKING TO CLASSICAL SPECTRUM

Lemma
Let H be Hermitian with nonbacktracking matrix B and let
p e C, > |Hyy| for all x,y. Define H, and D,, diagonal

H I D,) y )
( u)wy 1_/1«_2’Hry’2 ’ ( 'u+ Z 1_ 2’sz’2

Then p1 € o(B) if and only if 0 € o(H,, — D,,).

There is also a determinantal identity which extends the

Hashimoto-Thara-Bass identity.



FROM NONBACKTRACKING TO CLASSICAL SPECTRUM

Let v € C"°. Introduce the divergence vector u € C",
Uy = Z Hiyvgy.
y
Assume that Bv = pv then
HUyz = Z Hoy vy = Uy — Hypyvgy.
y'#yY

Switching = and y,

HUzy = Uy — Hpyvy,.

Hence ,u%xy = [y — ﬁmyum + ]Hwy]%xy and (as p # |Hyyl)

- pty — Hyyuy
y = ———————,
v p? — ‘Hry‘Q



FROM NONBACKTRACKING TO CLASSICAL SPECTRUM

oy Hayu,
y = ———————,
Y p? — ‘HaﬁyP

We have u # 0 iff v # 0.

Writing the eigenvalue equation Bv = pov in terms of u, we

arrive at ...
(Hu — Du)u =0.
with
H — .y D + y
(Hu)ay 1— 2| Hyy 2 ( s 21_ “2|Hypy|?

As requested.



FROM CLASSICAL TO NONBACKTRACKING SPECTRUM

Let H be Hermitian with nonbacktracking matriz B and let

p € C, u>|Hyyl for all z,y. Define H,, and D,, diagonal

H, | Hay|?
H . — D,) L .
( N)$y 1_M72|sz|2 ’ ( :u+ Zl— 2|H 2

Then p € o(B) if and only if 0 € o(H,, — D,,).
It is possible to invert the statement and obtain a claim like:
Let H € M,(C) and A € R\S, there exists Hy with associated
nonbacktracking matriz By such that p € o(H) if and only if

1€ a(B)).

We will see an explicit form of such statement later on.



A FIRST APPLICATION
For A € M, (C), the spectral radius is

p(A) = max{[u| : p € o(A)}.

The operator norm is

Afll2
141 = 1Al = s IA7]
[fll2
and
[Alla0 = max 37 1Ay Alln = max |Au, .
Y
Lemma

If H is Hermitian with non-backtracking matrix B, then, with
fp)=p+1/pfor u>1and f(pu) =2 for p < 1,

1] <
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A FIRST APPLICATION
For A € M,,(C), the spectral radius is

p(A) = max{[u| : p € o(A)}.

The operator norm is

Afll2
141 = 1Al = s IA7]
[fll2
and
[Alla0 = max 37 1Ay Alln = max |Au, .
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Lemma

If H is Hermitian with non-backtracking matrix B, then, with
fp)=p+1/pfor u>1and f(pu) =2 for p < 1,

(p(B) — [ Hll2-00)%
[ 2500

IH] < 2] Hl2-00 + + 3] H 100



A FIRST APPLICATION

Assume || H |20 = 1. We set 6 = max |Hyy| = || H||1-00 and
po = max (146, p(B)).

Recall

From the lemma: we have det(H, — D) # 0 for all € (o, 00).

Since H, — D, = I+ O(p™') as p — oo,



A FIRST APPLICATION

Recall, 110 = max (1 + 9, p(B)).

From the formulas of H,, and D, we find, for u > pyo,

H,,
1- M72|Hacy|2

| Hay [’
= 55 < 5’Ha¢y’2~

— H
w p? — |ny|2

(Hy)oy — Hay = '

1

Recall H,, — Dy, = 0 and 3, |Hyy|? < 1. From Gershgorin

circle theorem, we deduce that

1
H= <uo+)+25.
Ho

The conclusion A1 (H) < f(p(B)) + 36 follows easily. O



GERONIMUS POLYNOMIALS

For the adjacency matrix A of a d-regular graph, we may have

at the same time Hermitian and non-backtracking paths!

Let (NBj)z,y be the number of non-backtracking paths of length
k between z and y in G: we have the matrix identities
NBy = Iy, NB; = A and for k > 2,

NBj1 = NBy - A — (d — 1)NBy_;.



GERONIMUS POLYNOMIALS

It follows that for a monic polynomial of degree k of A:

NBj, = Gj,(A).

From the three-terms recurrence relation:
Grir(N) = AGE(N) — (d = Gir (M),
we find

6L = (= DA (5 2 ) = (= 0F a5 7).

where Uj(cos6) = sin((k + 1)0)/sin(#) is the Chebychev

polynomial of the second kind.




GERONIMUS POLYNOMIALS

If A is the adjacency operator of the infinite d-regular tree, then

(Gr(4) oz = ZGk )ayGo(A))y = d(d — 1)F11(k = 0).

since G(A)zy € {0,1} is 1 is « and y are at distance k.



GERONIMUS POLYNOMIAL

The spectral measure of the adjacency operator A of the
d-regular tree is defined by, for all k£ € N,

/ Nedp(\) = (AF) 4.

In particular,

(Ge(A)CU(A))e = d(d — 1)F 11k = £) = / GLNGeN) du(N).

The polynomials G} are thus orthogonal with respect to u.



KESTEN-MCKAY DISTRIBUTION

[ W = (44

Kesten (1959): u has support [—2v/d — 1,2+/d — 1] and density

d JAd—1) = X2
A2

2m d? —
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FUREDI-KOMLOS BOUND REVISITED



SPECTRAL RADIUS OF RANDOM NONBACKTRACKING MATRICES

Let H € M,(C) be an Hermitian random matrix with

independent centered entries (Hyy )z, above the diagonal,

for all z,v, I[*S|ny|2 <

1
— and a.s.—max|Hyy| <
n I?y

| =

Let B be the nonbactracking matrix of H. Recall

[H 2500 = maxg /3, |Hay|?

Theorem
Let ¢ = min(q,n'/'°), with high probability,

C



SPECTRAL RADIUS OF RANDOM NONBACKTRACKING MATRICES

For the Erdds-Renyi graph with average degree d and

H = (A —TEA)/Vd, we have that |[H|3_, . ~ max, deg(x)/d
concentrates around 1 iif ¢> = d > logn. Then ||H|| < 2+ o(1).
For ¢> = d = O(logn), the bound on ||H|| is off by a

multiplicative factor.
In the regime d < logn, for the non-backtracking matrix of A
or H, we have p(B) = O(1) < ||B|| ~ max, y/deg(z). This is an

effect of the non-normality of B.

The bound on p(B) is not optimal for d = O(1).



EXPECTED HIGH TRACE METHOD

We have for any £ € N

1
p(B) < B

Since [|A|? = ||AA*|], for even k,

We aim at, for some k > logn,

IETr(Bk/Q(Bk/Q)*> < On?k2.



EXPECTED HIGH TRACE METHOD

Expanding the trace

ETr(Bk:/Q(Bk’/Q)*> - EZ(Bk/2>ef(Bk/2>fe

< 2 Z n—(e ~v)+1) —(k: 2e(y ))’
YENE

where N} is the set of unlabeled paths v = (70, . .., V) which

visits each edge at least twice,

k
Yir1 # 1 for all t# 5

and the boundary conditions




EXPECTED HIGH TRACE METHOD

IETr(Bk/Q(Bk/Q ) < 02 Y n ) - e2e),
YEN

For nonbacktracking paths, we can estimate A} by genus

g =e—v+ 1 and visited edges k — 2e.



EXPECTED HIGH TRACE METHOD

Let v in N} which visits e < k/2 edges and v vertices. Set
g=e—v+1>0. We build a reduced graph G(v) by removing

inner vertices of degree 2.
Q—C @ o—0

The path ¥ = (Jo,...,%;) in the reduced graph a('y) determines
the original path.

Fact: @(7) has genus g = g, ¢ < 39+ 1 edges, v < 2g + 2
vertices.



EXPECTED HIGH TRACE METHOD

Let v in N} which visits e < k/2 edges and v vertices. Set
g=e—v+1>0. We build a reduced graph G(v) by removing

inner vertices of degree 2.
QU o—@

The path ¥ = (Jo,...,%;) in the reduced graph a('y) determines
the original path.

WQ—Q\T,O\,—,O—O—Q—VO
0 5
Vi

Fact: @(7) has genus g = g, ¢ < 39+ 1 edges, v < 2g + 2
vertices.



EXPECTED HIGH TRACE METHOD

The reduced graph CA;(’)/) has ¢ < 3g+ 1 edges and v < 2g + 2
vertices:
We have 2é = )" deg(z). Since all but two vertices have degree

at least 3:
26 >3(0—2)+2=230—4.

2 — 20+ 2 = 2§ = 2g,

we get ¥ < 29 + 2.

Consequently, e =g+v—1< 39+ 1.



EXPECTED HIGH TRACE METHOD

The number of reduced paths 4 = (4o, ...,¥;) of length k with

genus ¢ is at most

(at each time 1 < s k: we choose one of the é < 3g + 1 edges

and choose the end vertex of each new edge).

Moreover, since k — 2e = ) _(me — 2),

~

k—2e>k—2¢>k—06g.



EXPECTED HIGH TRACE METHOD
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EXPECTED HIGH TRACE METHOD
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EXPECTED HIGH TRACE METHOD

We estimate the number of paths v € N}, associated to a
reduced path 4.

ottt oI

If n; is the number of edges in G(+) associated to the i-th edge
of G (v) and m; > 2 its multlphclty, we have

é
E n;m; = k.
i=1

Hence, our number is at most the number of positive integer

vectors (p;) such that Y . p; > k

(<) <)
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EXPECTED HIGH TRACE METHOD

Finally,

ETr<Bk/2<Bk/2 ) < n? Z n~ (€M =v(M+1) (= (k=2e(7)
YENR

00 k 3
~ k g .
2y 0y g0 (g) (39 + 1) (29 + 2)3+1.
920 lAg:g

The computation is then straightforward: we find, if

k < cmin(gqlogn,n"33¢=2),

IETr(Bk/Q(B’“/Q)*> < On?k2.



REMARKS

The same argument works for inhomogeneous Wigner matrices

with bounded row variances:

| =

forall z, E E \ny\Q <1 and a.s.—max|H,y| <
z,y
y

Provided that maxE|H,,|? is not too large.
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DILUTED RANDOM MATRICES



DILUTED RANDOM MATRICES

We will now study random matrices with O(1) non-zero entries
on each row. For example, adjacency matrix of a random

4-regular graph on n vertices.

For the random matrices of interest, classical expected high
trace method will not work properly, even when applied to

nonbacktracking matrices.

Two extra technical problems: usually, we cannot recenter easily
the entries of the matrices, and for many models of interest, the

entries are not independent.



UNIFORM REGULAR GRAPHS



REGULAR GRAPH

For 2 < d < n —1 and nd even, the set G(n,d) of d-regular

graphs on the vertex set {1,...,n} is not empty.

A uniform d-regular graph on n is a random graph sampled

according to the uniform distribution on G(n,d).



EIGENVALUES

Consider the adjacency matrix A of a d-regular graph on n

vertices with eigenvalues

(we have A1 = d1).

Recall that .
= — 6
HnA n §k Ak

is the empirical distribution of eigenvalues.



KESTEN-MCKAY DISTRIBUTION

The spectral measure pg of the infinite d-regular tree 7y is

/ Nedpg = (A% )pa.

Kesten (1959): ugq has support [—2v/d — 1,2v/d — 1] and density

d JAd—1) - X
PP

2m d? —




EMPIRICAL DISTRIBUTION OF EIGENVALUES

Theorem (McKay (1981))

Let d > 2 and G = Gy, a sequence of d-regular graphs on n
vertices. Assume that for any integer ¢, the number of cycles of
length ¢ in G is o(n). Then, if A is the adjacency matrix of G,
weakly,

lim 14 = pig.
n—o0

We may apply this result to a uniform d-regular graph on n

vertices.



McKAy THEOREM

Take d = 4, n = 2000 and G a uniformly sampled d-regular
graph.

1.8e-01 4
1.6e-01 o — M
1.4e-01 o 1 1
1.2e:01 4
1e-01 4
8e-02 o
6e-02 o
4e-02 o

2e-02 4

0600 . . b=



McKAy THEOREM

Let G be a d-regular graph on n vertices and A its adjacency
matrix. For any fixed £, the nb of cycles of length < / is
Cy = o(n).

If a vertex «x is at distance at least k to any cycle of length at
most 2k, then the k-neighborhood of x is a d-regular tree of
depth k. In particular,

(Ak)x:p = (A’]%)oo = /Akd,ud

The number of such vertices is at least n — Crpk(d — 1).
1 — 1)Fd*

= ‘Z(Ak)waz _/)\kdﬂd < Ckk(d ) d =
n - n

o(1).

1
—TrAF —/)\kd,ud
n

L]



ALON-BOPPANA LOWER BOUND

Consider the adjacency matrix A of a d-regular graph on n

vertices with eigenvalues

d=X =X ==\,

Theorem (Alon - Boppana (1986), Mohar (2010))

For any d-regular on n vertices,

Cd
R S (e

The spectral radius of A7, is a lower bound on As.



ALON-BOPPANA LOWER BOUND

Every graph has a uninversal covering tree 7 = (V, &)

A construction of T: take o € G,V is the set of all
nonbacktracking paths (zg, -+, zx) starting from xg = o
(xi—1 # xi11). Two paths share an edge if one is the largest
prefix of the other.



ALON-BOPPANA LOWER BOUND

Weaker result on A\, = max;>2 |\i| = A2 V (=Ap).
The universal covering tree of G is Ty.

The nb of closed walks starting from z in G of length k is at
least the nb of closed walks starting from the root in 7, of

length k:

Lrv(ah) = L 30 (4b), > (4F),, = / Medg,

n n
T

For k even,

/)\kd,ud > k§/2<2m>k



ALON-BOPPANA LOWER BOUND

For even k,
Tr(AF) =Y AF <dF +nal.
J
So finally,

k3/2<2\/7) —k+A’j.

Take k = log,n.

Replacing A\ by Ao requires a refinement of this strategy
(without trace).



RAMANUJAN GRAPHS

Let G be a d-regular graph on n vertices. Consider its adjacency
matrix A
d=X 2 X222 A\

An = —d is equivalent to G bipartite.

The largest non-trivial eigenvalue is

A = max{|Ai] | Aif # d}.

G is Ramanujan if
A <2Vd — 1.

Ramanujan = non trivial eigenvalues bounded by the spectral

radius of the adjacency operator of the universal covering tree.



ALON’S CONJECTURE (1986)

Theorem (Friedman (2008))

Fix an integer d > 3. Let G, is a sequence of uniformly
distributed d-regular graphs on n vertices, then with high
probability,

A2V Al < 2V — 1 + o).

Most regular graphs are nearly Ramanujan!

We can take o(1) = c(loglogn)/(logn)?.



EXPECTED HIGH TRACE METHOD

If A is the adjacency matrix of GG, we would like to prove that

for even k > logn,

? k
d® N5+ \E < Te(AF) < dF + n<2\/d —1+ 0(1)) .

Friedman’s Theorem would follow.

Since A1 = d1, it is wiser to project orthogonally on 1-:

Tr(AR) — db = T&«(A - in*)k < n(2¢dj+ 0(1))k.



EXPECTED HIGH TRACE METHOD

For a first moment estimate, we would aim at

kg k
ETr(A") — d* = ETt <A - d11*> < n(Q\/d “1+ 0(1))
n

for k > logn.
This is wrong !

The probability that the graph contains K4.1 as subgraph is at

least n~¢. On this event Ay = d. Hence, for even k > logn,

k k
IETr(A - d11*> >n=d" > n<2\/d “1+ 0(1)) .
n

Subgraphs which have polynomially small probability compromise
the expected high trace method. Called Tangles.



STRATEGY

. Use the nonbacktracking matrix B instead of A.
. Remove the tangles.
. Project on 1+.

. Use the expected high trace method to evaluate the

remainder terms.



NONBACKTRACKING MATRIX

Oriented edge set :

E ={(z,y) : {z,y} € E},

Consider the matrix B acting on RE with entries
Bey = 1(y = a)1(z #b),
where e = (z,y) and f = (a,b).

e
® > ®

Y
®




NONBACKTRACKING VERSION OF ALON’S CONJECTURE

Complex eigenvalues, \E | = nd,

d—1=p1 > |p2| = - = |pndl-

Using the Hashimoto-Thara-Bass identities:

Theorem (Friedman (2008))

Fix an integer d > 3. Let G, is a sequence of uniformly
distributed d-regular graphs on n vertices, then with high
probability,

|2 < Vd—1+4+o(1).



CONFIGURATION MODEL

The oriented edge set E, |E| = nd is written as, with
V={1,...,n},

E=Vx{1,....d}.

A matching ¢ on E defines a multigraph G = G(o) where a

matching is a permutation such that 0?(z) = = and o(z) # .



CONFIGURATION MODEL

We take ¢ a uniform random matching on E.

Conditioned on the multigraph G = G(o) to be simple, G(o) is
uniformly distributed on G(n,d), d-regular graphs on
V={1,...,n}.

The probability for G = G(o) to be simple is lower bounded

uniformly in n.

Since P(E¢|F) < P(E°)/P(F'), it is enough to prove Friedman’s

Theorem for the configuration model.



CONFIGURATION MODEL

The nonbacktracking matrix with f = (y,1),

By = 1(o(e) = (y, j) for some j # 7).

can be written as

where
Nef = 1(61 :flve#f) :Nfe-

and M is the permutation matrix associated to o,

Mef = 1(0(6) = f) = Mfe-



RESTRICTED SPECTRAL RADIUS

Since B1 = B*1 = (d — 1)1, |ue| is the spectral radius of By..

For any integer ¢, the second largest eigenvalue of B is thus
bounded by

|,u2|€< max
\v:<1,v>:0 ||’UH2

We prove if o is a uniform random matching that with high

probability

BE
Bl

< (logn)®(d — 1)Y/2.
v:(1,0)=0 HU||2 ( ) ( )

with £ ~ logn.



PATH DECOMPOSITION
Recall Moy = 1(0(e) = f), Ny = 1(e1 = fr e # f)

Bef - (( > Z HM'YQS 172s)

’YEFZf s=1

where Fff is the set of paths v = (v1,...,7v2041) € (E)**1 such
that v1 =€, yop+1 = f and Ny 0. = 1.



PATH DECOMPOSITION

ef_ Z HM’YQs 17259

yert, s=1

The set of paths Fé 7 is independent of ¢: combinatorial part.

The summand is the probabilistic part.

v = (1, (1, 2)(1,1)(2,2)(2, 1)(3, 1)(3, 2)(4, 1)(4, 2)(3, 3)(3, 2)(4, 1)(4, 2) (5, 1) (5, 2)(2, 3)(2, 1) (3, 1)



PATH DECOMPOSITION

Bef - (( > Z HM’Y% 172s9

,Yel"éfs 1
The projection of M on 1+ is,
11%
M=M - :
- nd
Hence, if (v,1) = 0, we get
By = B,

where B = M N and

B, = ((MN ) -

'YQe 172s°

||::]N



"TANGLES

A multi-graph (or a path) is tangle-free if it contains at most

one cycle.

A multi-graph (or a path) is ¢-tangle-free if all vertices have at

most at most one cycle in their f-neighborhood.

We denote by F ff the subset of tangle-free paths Fﬁ £



PATH DECOMPOSITION

Assume that G = G(0) is (-tangle-free. Then, for 0 < k < ¢,
Bk = W),

where

k
(B(k))ef: Z HM”/2571725~

k s=
YEF), s=1

Recall M = M — 11*/(nd). For 0 < k < ¢, we define the

"projected" matrix

k
(B(k))ef: Z H

k s=
VEFf, s=1

M'YQS—1'72S :



PATH DECOMPOSITION

Beware that B* # B (k), this is only approximately true!

Since Mey = M.y + 1/(nd),

{ k-1
(BN ey = (B e+ Y Z H

¢ k=
'yEFf

14

1
Y2s—172s < H M’YQS*IA/2S7

k+1

which follows from the identity,

{ k-1

4
Hxs Hys+znys Tk — Yk H:cs
s=1

k=1 s=1 k+1



PATH DECOMPOSITION

A path v € Fff can be decomposed as the union of
v € Feka*l, = F;b and 7" € Flff_k.

with @ = o1, b = Yop41.




PATH DECOMPOSITION

For any e, f, we have |I'} sl =1(d—1). We find

k—1
— * — ¢
Z H Y2s—172s H Y2s—172s d_ 1) (B(k 1)11 B(e k))ef - (Rl(c))ef

’YGFff s=1 k+1

where (R,(f)) ; sums tangle-free paths whose union is tangled:
€

e k—1 ! e k—1 f e 1 f

Y2k+1 W V2k+1



PATH DECOMPOSITION

So finally,

L 1 L

d—1
0 _ (0) (k=1)q1xp(t—k) 1 )
B BY + — E B 11"B — E R,

k=1 k=1

Hence, if 1*v = (v,1) = 0 and G = G(0) is (-tangle-free, since
1*B—k) — 1*Bt—-Fk — (d _ l)éfk:]_*7

4
1
BWOy = E(e)v——ZR,(f)v.
k=1



PATH DECOMPOSITION

We arrive at

l
1
pol’ < max <IBON+ —STIR.
k=1
This inequality holds if G(o) is £ tangle-free.

Fact: For uniform random o, G(o) is ¢ tangle-free with high
probability for ¢ = 0.1logn/log(d —1). (Lubetzky-Sly (2010))



EXPECTED HIGH TRACE METHOD

¢
1 ¢
el < B+ — ST IR
nd
k=1
Our aim is then to prove that with high probability

1B < (logm)(d = 1)**  and | B < (logn)“(d — 1)"*/*

By estimating, for S = BY or § = R,(f).
E[|S||?* < ETr(SS5*)".

with k& ~ logn/(loglogn): on the overall paths of length
20k > logn.



EXPECTED HIGH TRACE METHOD

For S = B,
2k ¢
E||S||?* < ETr(55*) ZEHH N
Y i=11t=1

The path v = (v5,) is made of 2k tangle-free paths of length .
To control the nb of such paths with a given genus and given
number of vertices, we use crucially the fact that each ; visits

at most one cycle in the reduced graph of G(v).



EXPECTED HIGH TRACE METHOD

For S = B,
2k ¢
E||S||%* < ETr(SS5*)" ZEHH IS
1=1t=1

Recall M,y = M.y —1/(dn). The probabilistic part relies on the
claim: for T < v/dn and any (e, f;); € E27,

oo ) 2 (25

where a is the nb of distinct unordered pairs {e;, f;} and a; is

the nb of pairs appearing exactly once.
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NON-BACKTRACKING SPECTRUM OF
ERrRDOS-RENYI GRAPHS



NON-BACKTRACKING SPECTRUM OF ERDOS-RENYI GRAPHS

Eigenvalues of B for an Erdés-Rényi graph with average degree
d =4 and n = 500 vertices.




ErRDOS-RENYI GRAPH

Let B be the nonbacktracking matrix of the adjacency matrix

A, with eigenvalues

p = || = -

Theorem

Let d > 1 and G, be an Erdds-Rényi graph with average degree
d. With high probability,

pr = d+o(1)
o] < Vd+o(1).

Bordenave, Massoulié € Lelarge (2018)



ErRDOS-RENYI GRAPH

The bound |pus| < v/d + o(1) is a Ramanujan property: the
spectral radius of the nonbacktracking operator of the universal
covering tree of G,, is v/d + o(1).

There is an analog result for the stochastic block model
(inhomogeneous Erdés-Rényi random graphs with finite number

of classes).

The proof follows the same strategy. The path decomposition is
much more involved, the eigenvector associated to u; is

genuinely random.



STRONG ASYMPTOTIC FREENESS OF UNIFORM PERMUTATIONS



ALGEBRA OF PERMUTATION MATRICES
Let o1,...,0, permutations on {1,...,n}.

Let S1,...,S5, their permutation matrices:

(Si):ry = 1(0i(z) = y).

For a given non-commutative polynomial P, we consider the
matrix in M, (C)

P=P(S1,..., 50,5, 5.

Examples : P = $1525F — S357S3 or P =Sy + Sy + Sf + S5

(adjacency matrix of 4-regular graph).



STRONG CONVERGENCE OF RANDOM PERMUTATIONS

The constant vector 1 is an eigenvector of P and P*.

The operator norm of P on 1+ is

P
HP\“ _ sup 1712,
rert [ fll2
What is the value of HP‘H when n is large and o1,...,04

uniform random permutations?



ALGEBRA OF THE FREE GROUP

Let X be the free group with ¢ generators ¢g1,. .., g, and their

inverses.
e
PSP S
—@—e ) 92 ) Qe
= ° -
@ ok - )
e @ e
L

Consider the operator on ¢?(X),

P* - P()‘(gl)a s 7)‘(9q)7 )‘(91_1)7 R /\(gt;l))v

where \(+) is the left-regular representation (left multiplication).



STRONG ASYMPTOTIC FREENESS

P=P(S1,...,54,8,...,55).

T
7)) = sup 1712,
r£0 [ fll2
Theorem
Let Si,---,S4 be independent uniform permutation matrices in

Sn. Then with high probability, as n — oo,

|Pas | = 121+ o1).

Bordenave & Collins (2018)



STRATEGY

Set i* =i+ ¢, " =i and S = S}
Linearization trick: it is enough to consider symmetric linear
polynomials with matriz coefficients :

2q

AICLQ—FZCLi@Si

i=1
where a; € My(C) et a;» = a}.

Claim: the convergence of the spectra of such matrices A implies

the convergence of the operator norm of all non-commutative

polynomial P.



STRATEGY

Nonbacktracking: we introduce the nonbactracking matriz with
matrixz coefficients:

B = Z CLZ'®SZ'®EU.
(4,5)xi75*

Claim: the convergence of the spectral radii of all nonbactracking
matrices implies the convergence of the spectrum of A

(Extensions of Hashimoto-Ihara-Bass identities).

To deal with nonbactracking matriz with matriz coefficients, we
adapt the strategy used in the proof for the uniform regular
graphs: removing tangles / projection / expected high trace

method. This is more involved, due to the matrices a;.



REMARKS

Extend to tensor products: polynomial in S; ® S; and other

random unitary matrices.

The matrix A = Z?il a; ® S; is a random n-lift if
a; = Ey, 4y, € Mi(C): Ay =3, (a; + a). is the adjacency matrix
of a graph with k vertices and ¢ edges.

The convergence of the non-trivial eigenvalues of A is a

generalization of Alon’s conjecture to random n-lifts.
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REMARKS

Extend to tensor products: polynomial in S; ® S; and other

random unitary matrices.

The matrix A = Z?il a; ® S; is a random n-lift if
a; = Ey, 4y, € Mi(C): Ay =3, (a; + a). is the adjacency matrix
of a graph with k vertices and ¢ edges.

>

The convergence of the non-trivial eigenvalues of A is a

generalization of Alon’s conjecture to random n-lifts.



CONCLUDING WORDS
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