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Introduction



Spectral theorem

Let H ∈Mn(C) be an Hermitian matrix.

There is an orthonormal basis of eigenvectors of H. Its
eigenvalues (counting multiplicities) are real and are denoted by

λn 6 · · · 6 λ1.

The spectrum is the set

σ(H) = {λi : i = 1, · · · , n} = {λ : H − λI is not invertible}.

The operator norm coincides with the spectral radius

‖H‖ = sup
f∈Rn

‖Hf‖2
‖f‖2

= max{|λi| : i = 1, · · · , n}.



Trace formula

For any analytic function f ,

Tr f(H) =

n∑
x=1

f(H)xx =

n∑
i=1

f(λi).

The above formula identifies sum of diagonal entries
∑

x f(H)xx

and linear statistics of eigenvalues
∑

i f(λi). It connects a
geometric information with a spectral information.

In many situations, for good test functions f , the entries of
f(H) can be computed or estimated.

From the spectral theorem, we may also retrieve information on
eigenvectors from the individual entries f(H)xy.



Resolvent versus Polynomial

For f(λ) = λk

(Hk)xy =
∑ k∏

t=1

Hxt−1xt

where the sum is over all (x0, . . . , xk) ∈ {1, . . . , n}k+1 such that
x0 = x, xk = y: paths of length k from x to y.

For f(λ) = (λ− z)−1

f(H) = (H − z)−1

is the resolvent of H at z ∈ C\σ(H).

The resolvent is (essentially) the generating function of the
powers: formally

(H − z)−1 =

∞∑
k=0

z−k−1Hk.



Resolvent versus Polynomial

In (non-integrable) random matrix theory, the study of resolvent
is made thanks to analytical and probabilistic methods. The
study of polynomials relies mostly combinatorial arguments.

Resolvent methods have proven to be more powerful but not
adapted to all random matrix models.



Roadmap

In this course, we will investigate random matrices thanks to
their polynomials.

Two classes of random Hermitian matrices considered

? Wigner: independent coefficients above the diagonal.

? Uniform regular: for example, adjacency matrix of random
regular graphs or matrices obtained from uniform
permutation matrices.



Empirical spectral distribution (ESD)

The empirical distribution of eigenvalues / empirical spectral
distribution / spectral measure / density of states is the
probability measure on R

µH =
1

n

n∑
i=1

δλi .

Hence,
1

n
Tr f(H) =

∫
f(λ)dµH(λ).



Large dimensional matrices

We will be interested in sequences of matrices H = Hn.

First basic question: for some probability measure µ,

lim
n→∞

µH = µ (for the weak convergence topology).

If H is random, µH is a random probability measure. The
convergence holds in probability / a.s. if for all bounded
continuous functions, in probability / a.s.,

∫
ϕdµH converges.

Second basic question: for some reals a > b,

lim
n→∞

λ1 = a and lim
n→∞

λn = b.



Classical (high) trace method



Method of moments

Definition
Let µ be a probability measure on R with all moments
mk =

∫
λkdµ finite, k ∈ N.

It is uniquely characterized by its moments (UCM) if µ is the
unique measure with moment sequence (mk), k ∈ N.



Method of moments

Provided that, for some a > 0 and all k (even, large enough),

|mk| < (ak)k,

the Fourier transform analytic in a neighborhood of 0:∫
eitdµ =

∞∑
k=0

(it)k

k!
mk.

In particular µ is UCM.

If µ has support in [−a, a], then |mk| 6 ak and µ is UCM. Other
examples: sub-Gaussian or sub-exponential variables.

Carleman’s condition (1922): µ is UCM if
∞∑
k=0

m
− 1

2k
2k =∞.



Method of moments

Lemma (Method of moments)

Let µ be UCM and µn be a sequence of probability measures on
R. If for all k ∈ N,

lim
n→∞

∫
λkdµn = mk.

Then µn converges to µ weakly.

Corollary (Trace method)

Let µ be UCM and H = Hn ∈Mn(C) be a sequence of
Hermitian matrices. If for all k ∈ N,

lim
n→∞

1

n
TrHk = mk.

Then µH converges to µ weakly.



High trace and operator norm

Recall that ‖H‖ = max |λi|. For any even k,

1

n
Tr(Hk) 6 ‖H‖k 6 Tr(Hk)

.
If k � log n then n1/k → 1 and

‖H‖ ∼ Tr(Hk)1/k.



Lower bound on largest eigenvalue

Assume that µH converges weakly to µ with support [b, a],
|b| 6 a.

Then, for any ε > 0, µ(a− ε,∞) > 2cε > 0 and for all n large
enough

|{i : λi > a− ε}| = nµH(a− ε,∞) > ncε.

Notably,
lim inf

n
λ1 > a.

Also, for any ε > 0, for all even k large enough, for all n large
enough,

TrHk > ncε(a− ε)k.



Lower bound on largest eigenvalue

Assume that µH converges weakly to µ with support [b, a],
|b| 6 a.

Then, for any ε > 0, µ(a− ε,∞) > 2cε > 0 and for all n large
enough

|{i : λi > a− ε}| = nµH(a− ε,∞) > ncε.

Notably,
lim inf

n
λ1 > a.

Also, for any ε > 0, for all even k large enough, for all n large
enough,

TrHk > n(a− ε)k.



Upper bound on largest eigenvalue

Conversely, assume that for even k,

n∑
i=1

λki = Tr(Hk) 6 n(a+ ε)k.

Since λk1 6 Tr(Hk), we find,

λ1 6 n
1
k (a+ ε).

Assume that H is random. If for some k = kn � log n and
ε = εn → 0

ETr(Hk) 6 n(a+ ε)k,

then lim supn(Eλk1)
1
k 6 a. In particular, a.s. lim supn λ1 6 a.



In Summary

For a sequence of random matrices H = Hn,

For all fixed k, the convergence of

1

n
Tr(Hk)

will imply the convergence of µH .

For large k � log n, estimates on

ETr(Hk)

turn into estimates on the operator norm.



Remarks

These bounds can be turned into quantitative bounds.

Variants are possible, for example, replace the monomials Hk by
another sequence of well-chosen polynomials.

Wigner seminal work on random matrices (1955) used the trace
method for fixed k.

Fűredi and Komlós (1981) introduced the high trace method,
k � 1 in random matrix theory.



Semicircle law for Wigner matrices



Sparse Wigner matrices

Let H ∈Mn(C) be an Hermitian random matrix with
independent centered entries (Hxy)x>y above the diagonal,

for all x 6= y, E|Hxy|2 =
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

The scalar q controls the sparsity of H.



Erdős-Rényi random graph

Let A ∈Mn(R) be a symmetric matrix with iid Bernoulli entries
(Axy)x>y above the diagonal, Axx = 0.

P(Axy = 1) = 1− P(Axy = 0) =
d

n
.

Then d is (asymptotically) the average degree of a vertex

d− d

n
= E

n∑
y=1

Axy = Edeg(x) = E‖Ax‖22.

Also d/n is (asymptotically) the variance of the off-diagonal
entries, for x 6= y,

Var(Axy) =
d

n

(
1− d

n

)
.



Erdős-Rényi random graph

With d′ = d(1− d/n), let

H =
A− EA√

d′

be the normalized adjacency of the Erdős-Rényi graph with
average degree d.

EA =
d

n
(J − I).

H is a sparse Wigner matrix with sparsity parameter

q =
1

max |Hxy|
=
√
d′.



Perturbation inequalities

Let A,B ∈Mn(C) be Hermitian matrices.

Rank inequality, with r = rank(A−B) and for i > 1,
λ1−i =∞, λn+i = −∞.

λi(A) 6 λi−r(B).

Hoeffman-Wielandt inequality,
n∑
i=1

(λi(A)− λi(B))2 6 Tr(A−B)2.

In the study of ESD’s, these inequalities can be used to truncate
and recenter variables. For the Erdős-Rényi graph∣∣∣∣∫ ϕdµH −

∫
ϕdµA/

√
d′

∣∣∣∣ 6 ∫ |ϕ|′/n+ ‖ϕ′‖∞
√
d/n.



Histogram of Eigenvalues of A

Single realization for n = 1000, d = 5 and d = 20.



Semicircle law for Wigner matrices

Let H ∈Mn(C) be an Hermitian random matrix with
independent centered entries (Hxy)x>y above the diagonal,

for all x, y, E|Hxy|2 =
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

Theorem (Wigner’s semicircle law)

If q →∞, a.s.
lim
n→∞

µH = µsc

where dµsc(λ) = 1(|λ|62)
2π

√
4− λ2dλ.



Expected trace method

The heart of the proof is the following lemma.

Lemma
If q →∞, for any integer k,

lim
n→∞

1

n
ETrHk =

∫
λkdµsc(λ).

A direct computation gives∫
λ2k+1dµsc(λ) = 0 and

∫
λ2kdµsc(λ) = Ck,

where Ck is the k-th Catalan number:

Ck =
1

k + 1

(
2k

k

)
=

(
2k

k

)
−
(

2k

k + 1

)
.



Expected trace method

We have

1

n
ETrHk =

1

n

∑
γ

P (γ) with P (γ) = E
k∏
t=1

Hγt−1γt ,

where the sum is over all closed paths of length k,
γ = (γ0, . . . , γk) with γ0 = γk.

To each path, we associate a connected graph G(γ) with v(γ)

vertices and e(γ) edges.

1 2 3

45

1,2

3,14 4,7,13

5,6,12

9,10,11

8

γ = (1, 1, 1, 2, 3, 4, 3, 2, 5, 4, 5, 4, 3, 2, 1), e(γ) = 6, v(γ) = 5.



Expected trace method

In G(γ), each edge e = (x, y), x > y, is visited
me = m+

e +m−e > 1 times. From the independence of entries

P (γ) = E
k∏
t=1

Hγt−1γt =
∏

e∈G(γ)

E(Hm+
e

e H̄m−e
e ).

Since EHxy = 0: P (γ) = 0 unless for all e, me > 2. We thus
consider only closed paths which visit each edge at least twice.

Since
∑
me = k, |Hxy| 6 1/q and E|Hxy|2 = 1/n:

|P (γ)| 6 q−
∑

e(me−2)n−e(γ)

If for all e, m+
e = m−e = 1 then 2e(γ) = k and P (γ) = n−k/2.



Expected trace method

Let us say that two paths γ, γ′ are equivalent if
γ′ = σ ◦ γ = (σ(γ0), . . . , σ(γk)) for some permutation σ ∈ Sn.

An equivalence class is an unlabeled path. In the equivalence
class of γ, there are

n(n− 1) · · · (n− v(γ) + 1) 6 nv(γ)

other paths.

Recall |P (γ)| 6 q−(k−2e(γ))n−e(γ). If Wk is the set of unlabeled
closed paths of length k which visit each edge at least twice:∣∣∣∣ 1nETrHk

∣∣∣∣ =
1

n

∑
γ

|P (γ)| 6
∑
γ∈Wk

nv(γ)−e(γ)−1q−(k−2e(γ)).



Expected trace method

∣∣∣∣ 1nETrHk

∣∣∣∣ =
1

n

∑
γ

|P (γ)| 6
∑
γ∈Wk

nv(γ)−e(γ)−1q−(k−2e(γ)).

Since G(γ) is connected, we have v(γ) 6 e(γ) + 1 with equality
if and only if G(γ) is a tree.

1

n
ETrHk =

∑
γ∈W2

k

nk/2P (γ) + o(1),

where W2
k ⊂ Wk are the unlabeled paths such that G(γ) is a

tree and k = 2e(γ).

In particular, if k is odd, we have 1
nETrHk = o(1).



Expected trace method

If γ ∈ W2
k then for all e, m+

e = m−e = 1 as otherwise the path
must contain a cycle:

Hence, for γ ∈ W2
k , P (γ) = n−k/2 and

1

n
ETrHk = |W2

k |+ o(1).

For k 6 2n− 1, W2
k does not depend on n. It remains to check

that |W2
k | = Ck/2. We use a bijective method.



Expected trace method

We say that γ is canonical if γ0 = 1 and γt 6 maxs6t γs + 1 (i.e.
the order of visits of the vertices is their value). There is a
unique canonical path in each equivalence class.

1

2

3 4

γ = (1, 2, 1, 3, 4, 3, 1)

Let γ ∈ W2
k , either γt is visited for the first time or (γt−1, γt) is

the last edge which has been visited once, as otherwise there is a
cycle:



Expected trace method

To each canonical γ ∈ W2
k , we associate a path x = (x0, . . . , xk)

with x0 = 0 and xt+1 − xt = +1 if γt+1 = maxs6t γs + 1 and −1

otherwise.

1

2

3 4

γ = (1, 2, 1, 3, 4, 3, 1) and its path x drawn as a function on {0, . . . , k}

This map is a bijection and its image is the set of Dyck paths

Dk/2 = {(x0, . . . , xk) ∈ Nk+1 : x0 = xk = 0, xt−1 − xt ∈ {−1, 1}}.

In particular
|W2

k | = |Dk/2|.

It is an exercise in combinatorics that |Dk| = Ck.



Concentration

We have proved so far that EµH converges to µsc weakly.

It remains to check that EµH and µH are close with high
probability.

First possibility: by similar combinatorial arguments, we may
compute an upper bound on the variance:

Var

(
1

n
TrHk

)
= O

(
1

nq2

)
.



Concentration

Second possibility: general concentration inequalities apply
here.

? (Azuma-Hoefding’s inequality) If
∫
|ϕ′| 6 1, for all t > 0,

P
(∣∣∣∣∫ ϕdµH − E

∫
ϕdµH

∣∣∣∣ > t

)
6 2 exp

(
−nt

2

8

)
.

? (Talagrand’s inequality) If ‖ϕ′‖∞ 6 1 and has at most k
inflections points, for all t > 0,

P
(∣∣∣∣∫ ϕdµH − E

∫
ϕdµH

∣∣∣∣ > t

)
6 ck exp

(
−nq

2t2

c2k

)
.



Remarks

With q →∞, the same argument works inhomogeneous Wigner
matrices with constant row variances:

for all x, E
∑
y

|Hxy|2 = 1 and a.s.−max
x,y
|Hxy| 6

1

q
.

If q = O(1) then the semicircle law may not hold. For example,
for the Erdős-Rényi graph with fixed average degree d, the ESD
converges to a probability measure which depends on d.



Some references

Wigner, E. (1955). Characteristic vectors of bordered matrices
with infinite dimensions. Annals of Mathematics.

Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An
introduction to random matrices. Cambridge: Cambridge
University Press.

A. Bose, (2018) Patterned random matrices. CRC Press, Boca
Raton.

Lecture notes on my webpage.



The Fűredi & Komlós upper bound



Convergence of the largest eigenvalue

Let H ∈Mn(C) be an Hermitian random matrix with
independent centered entries (Hxy)x>y above the diagonal,

for all x, y, E|Hxy|2 =
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

The semi-circle law has support [−2, 2]. If q →∞, the Wigner’s
semicircle theorem implies that,

a.s.− lim inf
n→∞

λ1 > 2.

Theorem (Convergence of largest eigenvalue)

If q � (log n)4,
a.s.− lim

n→∞
λ1 = 2.



Expected high trace method

This theorem is a direct consequence of:

Lemma (Fűredi & Komlós upper bound)

If q >
√

2k4, we have

ETrHk 6 n2k+1.



Expected high trace method

ETrHk 6 n
∑
γ∈Wk

nv(γ)−e(γ)−1q−(k−2e(γ)),

where Wk is the set of unlabeled closed paths of length k which
visit each edge at least twice.

Since g(γ) = e(γ) + 1− v(γ) > 0 and q2 6 n, we have

ETrHk 6 n
∑
γ∈Wk

q−(k+2−2v(γ))
(
q2

n

)g(γ)
6 n

∑
γ∈Wk

q−(k+2−2v(γ)).

Let Wk(v) ⊂ Wk be the paths with v(γ) = v. If v(γ) > k
2 + 1,

Wk(v) is empty (because e(γ) 6 k/2 and g(γ) > 0).

ETrHk 6 n

k/2+1∑
v=1

|Wk(v)|q−2(
k
2
+1−v).



Expected high trace method

ETrHk 6 n

k/2+1∑
v=1

|Wk(v)|q−2(
k
2
+1−v).

Lemma
For any integer 1 6 v 6 k

2 + 1,

|Wk(v)| 6 2kk8(
k
2
+1−v).

We find, if 2k8 6 q2,

ETrHk 6 n2k
k/2+1∑
v=1

(
k8

q2

)( k
2
+1−v)

6 n2k
∑
t>0

(
k8

q2

)t
6 n2k+1.



Expected high trace method

|Wk(v)| 6 2kk8(
k
2
+1−v).

We build an encoding of Wk(v), that is an injective map on
Wk(v). Recall that unlabeled paths may be identified with
canonical paths γ: γ0 = 1 and γt 6 maxs6t γs + 1 (i.e. the order
of visits of the vertices is their value).

We mimic the Dyck path encoding of γ ∈ W2
k .

Let γ = (γ0, . . . , γk) = (γt)t. Think of t = 1, . . . , k as a time. A
time t is marked

+ if γt is new (thus, the edge {γt−1, γt} is seen for the first
time);

− if the edge {γt−1, γt} is seen for the second time and this
edge was previously marked +;

? otherwise.



Expected high trace method

+ new vertex, − second visit of the edge, ? otherwise.

1 2 3

45

γ =(1, 1, 1, 2, 3, 4, 3, 2, 5, 4, 5, 4, 3, 2, 1), k = 14, v = 5

(?, ?,+,+,+,−,−,+, ?, ?, ?, ?,−,−).

The number of + is v − 1. The number of − is v − 1. The
number of ? is s = k − 2v + 2.



Expected high trace method

If the time is a +, then γt = maxs<t γs + 1.

We mark the ?-times by their arrival vertex γt.

If the time is a −, there may be an ambiguity:

+ +

− −

+−

(+,+,−,+,−,−)

+ + +

?

− ?

(+,+,+, ?,−)

Call the ambiguous − times, the crossroad times. We mark the
crossroad times by their arrival vertex γt.



Expected high trace method

Fact: the number of crossroad times is at most the number of
star times: s = k − 2v + 2.

The positions of +,−, ? and crossroad times and their marks
characterize uniquely a canonical path.

We get, with s = k − 2v + 2,

|Wk(v)| 6 2k · ks · ks · vs · vs 6 2kk2sv2s.

Since v 6 k, we obtain the claim bound.



Remarks

The same argument works for inhomogeneous Wigner matrices
with bounded row variances:

for all x, E
∑
y

|Hxy|2 6 1 and a.s.−max
x,y
|Hxy| 6

1

q
.



Remarks

The condition q � (log n)4 for the convergence of λ1 is not
optimal.

For the Erdős-Rényi graph with average degree d and
H = (A− EA)/

√
d, we have q =

√
d and

λ1(H) = (1 + o(1))
λ2(A)√

d
= 2 + o(1)

as soon as q2 = d� log n.



Remarks

If (Hxy)x>y have a symmetric distribution and the matrix is
flat, i.e. q = O(

√
n), then much better bound are available, A.

Soshnikov (1999). O. Feldheim, S. Sodin (2010).

This allows to capture the fluctuations of the largest eigenvalue

λ1 = 2 + (Z + o(1))n−2/3.

Thanks to resolvent methods, the fluctuations are now known in
a much greater generality: see J. Huang, B. Landon, H.T. Yau
(2017) (if q > nα, α > 1/9).



Remarks

General concentration inequalities apply here, for some
universal constant c, for all t > 0,

P(|λ1 − Eλ1| > t) 6 2 exp(−cq2t2).

See the monographs,

S. Boucheron, G. Lugosi, P. Massart (2013) Concentration
Inequalities: A Nonasymptotic Theory of Independence. Oxford
University Press.

Anderson, G.W.; Guionnet, A.; Zeitouni, O. (2010). An
introduction to random matrices. Cambridge: Cambridge
University Press.



Further references

Fűredi, Z.; Komlós, J. The eigenvalues of random symmetric
matrices. Combinatorica 1 (1981), no. 3, 233–241.

Vu, V.. Spectral norm of random matrices. Combinatorica 27
(2007), no. 6, 721–736.

Optimal bounds in the sparse regime: two recent works with F.
Benaych-Georges, A. Knowles. See also, Latała, R; van Handel,
R.; Youssef, P. The dimension-free structure of nonhomogeneous
random matrices. Invent. Math. 214 (2018), no. 3, 1031–1080.



Bandeira & van Handel comparison argument



Comparison Argument

Let H ∈Mn(C) be an Hermitian random matrix with
independent centered entries (Hxy)x>y above the diagonal,

for all x, y, E|Hxy|2 6
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

Let Sr ∈Mr(C) be a symmetric matrix with independent
entries (Sxy)x>y above the diagonal and with p = 1/4,

for all x, y, Sxy
d
=

Ber(p)− p√
p(1− p)

.

Lemma
For all even k, if r = dq2e+ k,

qkETr(Hk) 6
n

r
ETr(Skr ).



Comparison argument

We start by a lower bound on ETr(Skr ).

ETr(Skr ) =
∑
γ

Q(γ) with Q(γ) = E
k∏
t=1

Sγt−1γt

where the sum is over all closed paths of length k,
γ = (γ0, . . . , γk) with γ0 = γk.

Since the entries are iid above the diagonal and ESxy = 0

ETr(Skr ) =
∑
γ∈Wk

r(r − 1) · · · (r − v(γ) + 1)Q(γ),

where Wk is the set of unlabeled closed paths of length k which
visit each edge at least twice.



Comparison argument

Since Sxy
d
= Ber(p)−p√

p(1−p)
and p = 1/4, we may check that for all

m > 2,
ESmxy > 1.

It follows that Q(γ) =
∏
e∈G(γ) E(Sme

xy ) > 1 and

ETr(Skr ) >
∑
γ∈Wk

r(r − 1) · · · (r − v(γ) + 1).

Set r = dq2e+ k. Since v(γ) 6 k, we get r − v(γ) + 1 > q2 and

ETr(Skr ) >
∑
γ∈Wk

q2v(γ).



Comparison argument

If r = dq2e+ k,
ETr(Skr ) >

∑
γ∈Wk

q2v(γ).

We have already proved the following upper bound on ETrHk.

ETrHk 6 n
∑
γ∈Wk

q−(k+2−2v(γ)).

So that,
ETrHk 6 nq−k−2ETr(Skr ).

As requested.



Application

The Fűredi-Komlós bound asserts that for k = 4r1/8,
3/8 < α < 1/2,

E‖Sr‖ 6 (ETrSkr )
1
k 6 (rk/2+12k+1)1/k 6 2

√
r + rα.

From Talagrand’s inequality, for all k(
ETrSkr

) 1
k
6 r

1
k (E‖Sr‖k)

1
k 6 r

1
k (E‖Sr‖+ C

√
k).

If r = dq2e+ k,

Eλ1 6 (ETrHk)
1
k 6

(n
r

) 1
k
q−1
(
ETrSkr

) 1
k
.

Optimizing over k, we find for some explicit 0 < δ < 1

Eλ1 6 2 + C max

(√
log n

q
,

(√
log n

q

)δ)
.



Convergence of the largest eigenvalue

Let H ∈Mn(C) be an Hermitian random matrix with
independent centered entries (Hxy)x>y above the diagonal,

for all x 6= y, E|Hxy|2 =
1

n
and a.s.−max

x,y
|Hxy| 6

1

q
.

Theorem (Convergence of largest eigenvalue)

If q �
√

log n,
a.s.− lim

n→∞
λ1 = 2.

Bordenave, Benaych-Georges & Knowles (2017)



Remarks

The same argument works for inhomogeneous Wigner matrices
with bounded row variances:

for all x, E
∑
y

|Hxy|2 6 1 and a.s.−max
x,y
|Hxy| 6

1

q
.

The bound q �
√

log n is optimal this time. For Erdős-Rényi
graph it corresponds to average degree d� log n.
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