3.3 Stochastic duality

Definition. For two Markov processes X, Y and some function

D(xz,y), X and Y are dual wrt the duality function D if
E*[D(X(1),Y)] = EY[D(X,Y ()]

holds.

e The self-duality of ASEP, ¢-TASEP and so on can be
formulated in this way.

e The calculation of n-point function is reduced to an n-particle
problem. For example, for SEP, the average density (1pt
function) (n,(t)) satisfies the master equation for the one
particle continous time random walker.



Systematic way to construct processes with duality

e Finding a duality is nontrivial. For ASEP, its self-duality is
related to U,(sla2) symmetry. (The SEP is related to the sl

symmetry. )

e A general scheme to construct Markov processes with self

duality from a quantum group was proposed in [CGRS2016].

e As an application we found an asymmetric version of the KMP
process with U,(su(1,1)). This is an interesting example
which has a quantum group symmetry but is not integrable.
A question is if one can study the asymptotics (KPZ or not?).



3.4 Macdonald process

e TASEP is related to the Schur measure and process, which

are written in terms of the Schur function.

e As a generalization, one can naturally consider the Macdonald

measure
1

EPA(Q)QA(b)

and Macdonald process.

e The Macdonald polynomials have two parameters ¢,q. The
t = 0 case is called the g-Whittaker function. Hence we can

consider g-Whittaker measure and process.



g-Whittaker process

e Borodin and Corwin found that the marginal dynamics on the
left diagonal of a Markov dynamics related to the g-Whittaker
process is the ¢-TASEP. Hence one can study fluctuation
properties of g-TASEP by considering g-Whittaker measure.

o A difficulty of studying the g-Whittaker measure compared to
the Schur case is that for the g-Whittaker function, no single
determinant formula has been known. So the ¢-Whittaker
measure is not directly related to the determinantal point

process.



e Still there are various nice properties for the g-Whittaker (and
for Macdonald) polynomials. Borodin and Corwin found that
by using the Macdonald operator (whose eigenfunctions are
the Macdonald polynomials), one can find a multiple integral
formula for the ¢ moment, which is the same as the one

derived by the duality in the fourth lecture.

e A difficulty. For the random initial condition with parameter

«, the g-moment

n e(q_l)z

(q"M=y = (—1)" n(n . /H dz; H Z:;;k 1:[1 (2, —a/q)(1— 2)*

1<k

diverges for a large enough n/!



4. An approach without ¢ moment

(Based on a collaborations with
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4.0 Partitions and Gelfand-Tsetlin cone

Partition of length n

P, = {)\:()\17--. ,)\n)EZ+n‘>\12>\QZ--->)\n}

Gelfand-Tsetlin cone

GTw := {(AD X? .. AWy ¢ Zf(N+1)/2‘)\éT1+1) < )\ém) < )\gmﬂ)}

An element is denoted by Ay .



Gelfand-Tsetlin cone
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4.1 (Skew) g-Whittaker functions

The skew ¢-Whittaker function (with 1 variable)

n—1

o) = [T T g s

i=1 )\ — s (Q7 Q) )\z’—I—l

g-Whittaker function with NV variables

N
Py (a) = > 11 Paor jai-n (a5)
AR 1<i<k<n-—1 I
k41 k k+1
>‘§+1 )<,\( )<ttt
where the sum is over GT with A = A(") and a = (aq,...,an).



Another function.

_ Ai—Aip1+1. L - . q
Qx (1) = J:ll (g 1T ) oo /JFN J:ll - P (2) II (z;t) my (2)
where

N
I (a;t) = H et
j=1

m?v(z):(%m')lNN! H (2i/ 25 @)oo (2/ 215 @)
1<i<j<N

Remark: May look a bit strange but () is related to the initial
condition. Recall s, for TASEP.
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4.2 ¢-Whittaker process

Definition. For a set of NV parameters a and ¢t > 0, set

N o as) - Onen
P(Ay) == L= PA(”/A;(;.%‘J) Q) (t)

Proposition.

Pi(Ay) satisfies the Kolmogorov forward equation (master
equation) for the Markov dynamics introduced before on GT cone.

One can also check the step initial condition on the ¢g-TASEP

marginal )\Z@.

To summarize, if we can study the g-Whittaker process, we can
study the N-particle g-TASEP with step i.c.
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g-Whittaker measure

rN(t)(= )\g\J]V) — N) can be studied by focusing on AV (¢).

Marginal for A\(N)(¢) is given by g-Whittaker measure:

Let us recall the Cauchy identity

ZPA )Qx(y :ﬂ

AEPN

xzy]7

where @ (y) is the ordinary ¢-Whittaker function.
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4.3. Nth particle position
By writing Py(z) = X Ry(x), £; = \j — X\j1+1 the Cauchy

identity can be rewritten as

00 N 1
(XY;q)o
>, Re@)Riy
b1, fn_1=0 jzl sz l(xzy]’q)

with X =x1---2n,Y =y1---yn. Using this we find a multiple
integral formula for the particle position,

P (1) = 1]

1 dzg b (2t (A/Z;4q)
(@) /EN H | ( ) N(Z)H(CL;t) | HN: (ai/25; Q) oo
where A = Hizl a; and Z = Hz‘:1 2.
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4.4 Fredholm determinant for the g-Laplace transform
Theorem. For ( # q¢",n € Z

1
<<quw<t>+N; q>oo> - Al MRee

where (- --) is the expectation and
N-1

fn) = —— Kmm)=3 dima(n)
(=0
[

T 1-q/C

e vt 1 v 1
¢1(n) = 1/al+1/l)dvvn_|_N 1;[ (

v— a1 L v —a; qv/ak; @)

Here C,, D is around {0}, {a;q’} respectively.
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4.5 Ramanujan’s summation formula and theta
function

Theorem. For |q| < 1,[b/al < |2]| < 1,

> (04" @)oo _n _ (@25 @)oo (L5 )00 (45 @)oo (23 @)oo

nez (aq’”;q)oo (GQQ)OO(%;Q)OO(Z;Q)OO(G—I)Z;Q)OO

We introduce a modified Jacobi theta function
0(2) = (2,9)00(q/ 2 @) 0o

Also
0(1/z) = —=0(2)

which satisfies 6(1/z) = 0(z).

o
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Frobenius determinant (Cauchy det for theta function)

Let |x] satisfy |—x] = —[x] and the Riemann relation

[z + yllr — yllu + v][u — ]
= [ +ullxr — ully +v]ly —v] — [z + v][z — v]ly + ully — u]

[x| satisfying the above two relations is necessarily in the form
¥ +b f(c) where f(z) is either f(z) = z, sinmz or o(z), the
Weierstrass sigma function. 8(¢%) is an example of [z].
Theorem. ( ) For [x] above, the Cauchy
determinant type formula holds. With B =) _.b;,C' =) ¢,

A+ B = C]Li;lbi = bjlle; —ai] . A+ b; — ¢
AT 100 — ¢ _dt<Dmrﬁﬂ>
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Mutliple integral formula for ¢-Laplace transform

We consider the quantity.

dz; Az (490 (A/Z: o
o %;/TNH (2 ) YOty T (/2 )

Here we use the Ramanujan’s formula with a = (,0 =0,z = A/Z.

<

CA

3 1 (A)ﬂ_(zwﬁ (G Voo @ Do 0() (g5 9) o
( -

— (¢dha)oe \Z Coo(Ld)ec(Bid)oe O(O)(Di0)c

Z
Proposition. The following multiple integral formula holds.

1
(Ca*vsq

dz@ Hz;éj(zz/zw q)oo 11(z; 1)

< 5 00 L, (/2 @)oo at)

TN
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After some calculations, we find

1

<

(CgPvsg

where

de z<j — aj) Hi<j(zi

- 2j)

TN

2 sz(aZ — %)

" Hi<j (ai/aj)HKj (ZZ/Z])

11; j é(ai/zj)

(%z- ai |1 (#i/ak; @)oog(zis t)
é H [xzi(ai/ak; @)oog(as; t)

g(z;t) = e*".
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By the Frobenius determinant formula,
dz; 0 i/ %j
S
TNz a2 0(¢)0(ai/z;)

5 Hk Zz/ak q oog(z’bat)(QQQ)oo
H Hk;éz ai/ak; q)oog(ai; t)

<

(CqAN

At this point we find a product of two determinants. Now we can

apply the standard machinery of random matrix theory!

By using the Cauchy-Binet identity,

— det (/ dz a; 0(Cai/z) (¢;9) Hk(z/ak;q)oog(z;t)>
T

z ai —20(0)0(ai/z)  [lpzi(ai/ar; @)ocg(aist)

19



By making the contour smaller and taking the pole at z = q;

— det (52.]._/ dz a; Q(Cai/z) (CI;CZ)oo Hk(z/ak;q)oog(z;t)>
C

. 2 ai —20(0)0(ai/z)  |lgsiai/ar; @)ocglai;t)

Here using the Ramanujan’s formula again with
a=1/C,b=14q/(,z = z/a;,

1 2\" ()00 (L243 @)oo (45 )2
2 L—q"/¢ (%‘) - (1/¢Gq)

= 00 (0€; @)oo (2/ 055 @) sc (905 /23 @) oo
- 0(&)
- 0(1/¢)0(z/ay)

2
(95 9) 5
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we See€

1 1 dz a;
= det [ 6,5 — Z
<(Cq/\N§C])oo> et( g %1—(]”/{ c. Z Q; — %
y 2" 1 (2/ak; @) 0og(2;5 )
a’(q; @)oo [ Tz (@i/ ar; @)oo g(ai; t)
= det(d;; — ¥ A(i,n)B(n, j))
nez
with
. 1 dz a; n
Alin) = 1—q"/CJo, 2z a; — P I;I(z/ak;q)oog(z;t)
B(n, j) = :

(45 @)oo (ai/ar; @)oo g(ai; t)
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Here use det(1 — AB) = det(1 — BA). We see

N
= ZB(m,i)A D)
i=1

B i 1 1
L~ a"(q; Q)oo(@i/ar; Q)ooglai;t) 1 — g /C

i=1
d i
: LT ZZ aza . H(Z/ak q)c09(2;1)
/ d / 2" e (2/ak; )09 (23 1)
(Y
1 — qn/C c, # U— z v “‘_k(?}/ak;q)oog(v;t)
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where the contour D is around {a;}. Here

[1.(2/ak; @) ocg(2: t)

[ (v/ak; @)sog(vst)
[1(az/ar; @)oo (2 — ag)e
[1(qv/ak; @)oo (v — ag)e’

zt

Hence

{ : /dv/ dz 2" N e [, (q2/ ar; @)oo
@) " T o™ o, T S Lo o

1 —ap/z
. (z—vl;ll—a:/v 1)
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By using

we arrive at the desired Fredholm determinant expression.
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Comments

e Stationary case can be equally studied by simply replacing
zt

g(z,t) = e** by g(z,t) = (a/ez;Q)oo.

There is no difficulty of diverging moments!

e Many models can be studied in a unified way. For example

setting ¢ = 0 gives results for TASEP.

e Stationary HS6VM can also by studied by using this
approach. 's talk in the following session.
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Multiple integral formula for TASEP case

By taking ¢ — 0 limit, we find

N ee(zj)t
PIN(t) > N] = % /O | nrl | (TR

j<k

This formula can be found from the Schutz determinantal
transition probability and using the integral representation of Fj,
function. [cf. Talk by Le€]
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