Integrable stochastic interacting systems

T. Sasamoto

January 21, 2019

Abstract

Stochastic interacting particle systems show many intriguing phenomena due to the interaction among particles and have wide applications in various fields of science, but in general it is quite difficult to study their properties in detail. Over the last few decades, however, it has been gradually recognized that certain stochastic interacting particle systems can be "solved exactly" , meaning that they admit explicit calculations of various probabilities and expectation values, and behind this tractability lies the integrability of these systems. In particular there have been remarkable progress in the understanding of growth and transport models in the Kardar-Parisi-Zhang (KPZ) universality class, which have turned out to have deep connections with random matrix theory, representation theory, special functions and so on.

In these lectures, we will explain these developments, mainly focusing on the models in the KPZ class. In the first lecture, we introduce one of the most fundamental models on the subject, the asymmetric simple exclusion process (ASEP) and explain the connection between its totally asymmetric version (TASEP) and random matrix theory[1]. In the second lecture we introduce various models and discuss their integrability [2]. In the third lecture we introduce the notion of stochastic duality and explain its relation to the replica approach of using moments [3]. Then we elucidate how an exact formula for ASEP can be obtained by combining the duality and integrability of the model. In the fourth lecture we explain our approach introduced in [4], which does not rely on the moment calculation. We emphasize that the method can be applied to many models in parallel, including the stationary situation. In the last lecture we discuss our recent extension of the techniques to study a two species exclusion process [5]. The implications to the nonlinear fluctuating hydrodynamics, which was proposed recently by H. van Beijren and H. Spohn, is also explained. Lastly we discuss some outstanding problems.

Contents

0 Introduction 3
1 TASEP 4
1.1 Time evolution equation for the transition probability 5
1.2 Bethe ansatz for ASEP 6
1.3 Determinantal formula for TASEP 7
1.4 Charlier ensemble representation 8
1.5 Schur measure and process 9
A Formulation of lattice gases 10
B GUE and Tracy-Widom distribution [3, 10, 17] 11
C Partition, Schur function, etc 13
D LUE formula for TASEP with step initial condition 14
E Some q-functions and q-formulas 16
F Pauli matrices, Tensor product 17

Acknowledgments: TS would like to thank the organizers of the ICTS program for giving him an opportunity to give this series of lectures.

0 Introduction

In nature all matters consist of huge number of atoms and molecules, exhibiting various intriguing phenomena such as phase transitions, turbulence and so on. To have better understanding of such systems, we often construct models which should retain essential ingredients of the original systems. In many cases, one can model a system as a stochastic process of many particles which are interacting with each other, namely, a stochastic interacting system. Mathematical foundation of stochastic interacting systems had been set long time ago [14]. See Appendix A for a short explanation about the formulation.

There have been extensive amount of results on such systems [15], but it is often difficult to study their properties in detail. Recently, it has been realized that certain stochastic interacting systems allow quite exact and explicit analysis from which one can obtain very fine properties of the systems and there have been remarkable progress on the subject. In this development, a particularly important role was played by the asymmetric exclusion process and the Kardar-Parisi-Zhang (KPZ) equation.

The Asymmetric simple exclusion process (ASEP) is a stochastic process of many (infinite number of) particles on \mathbb{Z} in which each particle tries to perform asymmetric random walk, with hopping rate to the right p and to the left q, under the volume exclusion interaction. The special case of the ASEP in which either $p=0$ or $q=0$ is called TASEP (Totally ASEP). When $p>q$, there is a net particle current to the right.

Figure 1: ASEP
By replacing empty sites by the upward slope / and occupied sites by the downward slope \backslash, the ASEP is mapped to a surface growth model, called the single step model.

In the studies of surface growth, the standard model is the KPZ equation, which was introduced in 1986 [13]. In the case of one dimension, for the height of the surface $h(x, t)$ at position $x \in \mathbb{R}$ and at time $t \geq 0$, it reads,

$$
\partial_{t} h(x, t)=\frac{1}{2}\left(\partial_{x} h(x, t)\right)^{2}+\frac{1}{2} \partial_{x}^{2} h(x, t)+\eta(x, t)
$$

where $\eta(x, t)$ is a Gaussian white noise with $\left\langle\eta(x, t) \eta\left(x^{\prime}, t^{\prime}\right)\right\rangle=\delta\left(x-x^{\prime}\right) \delta\left(t-t^{\prime}\right)$. Here $\langle\cdot\rangle$ means the average wrt η. In their original paper [13], Kardar, Parisi and Zhang applied a dynamical version of the renormalization group analysis to show that the height fluctuations scale like $O\left(t^{1 / 3}\right)$ as $t \rightarrow \infty$. There have been a lot of (physical) analysis of this equation, but there had not been much information available for the height distribution until recently.

In 2010, the first explicit distribution has been found for special initial condition called the narrow wedge initial condition $e^{h(x, 0}=\delta(x)=\lim _{\delta \rightarrow 0} c_{\delta} e^{-|x| / \delta}[2,21-24]$. The formula takes a simple form for a particular expectation:

$$
\begin{equation*}
\left\langle e^{-e^{h(x, t)+\frac{x^{2}}{2 t}+\frac{t}{24}-\gamma_{t} s}}\right\rangle=\operatorname{det}\left(1-K_{s, t}\right)_{L^{2}\left(\mathbb{R}_{+}\right)} \tag{0.1}
\end{equation*}
$$

where $\gamma_{t}=(t / 2)^{1 / 3}$ and the kernel $K_{s, t}$ is

$$
\begin{equation*}
K_{s, t}(x, y)=\int_{-\infty}^{\infty} \mathrm{d} \lambda \frac{\operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda)}{e^{\gamma_{t}(s-\lambda)}+1} \tag{0.2}
\end{equation*}
$$

In the long time limit, we get

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{h(x, t)+\frac{x^{2}}{2 t}+\frac{t}{24}}{\gamma_{t}} \leq s\right]=F_{2}(s) \tag{0.3}
\end{equation*}
$$

where F_{2} is the GUE Tracy-Widom distribution from random matrix theory, see Appendix B. The result (0.3) says that the height of an interface for large tand the largest eigenvalue of GUE of large matrix dimension share the same distribution in the limit. Long time and large scale behaviors of a wide variety of systems are expected to be the same, constituting the KPZ universality class.

In the last decade, many generalizations and related results have been found. Behind their solvability lies the integrability of the systems, which means that generators of stochastic process have certain high symmetries. The theory of integrable systems also have a long history and there have been remarkable accumulation of knowledge on them. Whereas a lot of methods and results which have been developed in integrable system community are useful for studying stochastic interacting systems, the integrability for stochastic systems have some novel feature and provide new direction for the studies of integrable systems as well.

In this series of lectures, we discuss the integrable stochastic interacting systems, by mainly focusing on how the formulas above can be found and generalized.

Some notations. $\mathbb{N}=\{0,1,2, \cdots\}, \mathbb{Z}_{+}=\{1,2, \cdots\}, \mathbb{T}=\left\{e^{i \theta}, 0 \leq \theta<2 \pi\right\} Z$ is used as a normalization in general. For q-notation, see Appendix E.

1 TASEP

The main goal of this section is to get the result about the limiting distribution like (0.3) for the case of the TASEP with step initial condition in which all sites on $x \leq 0$ are occupied and all the rest are empty at $t=$. For the integrated current $N(t)$ at the origin, which is the same as the number of particles at t on $x \geq 1$ for our setting, the result reads

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}\left[\frac{N(t)-t / 4}{2^{-4 / 3} t^{1 / 3}} \geq-s\right]=F_{2}(s) \tag{1.1}
\end{equation*}
$$

What we actually try to show in the following is

$$
\begin{equation*}
\mathbb{P}[N(t) \geq N]=\frac{1}{Z} \sum_{\substack{x_{i}=N \\ 1 \leq i \leq N}}^{\infty} \prod_{1 \leq j<k \leq N}\left(x_{j}-x_{k}\right)^{2} \prod_{j=1}^{N} \frac{t^{x_{j}} e^{-t}}{x_{j}!} \tag{1.2}
\end{equation*}
$$

This formula looks very similar to (B.3) with $\beta=2$ for the largest eigenvalue of GUE. One can follow the same steps (by replacing Hermite polynomials with Chariler polynomials) to show (1.1). The result (1.1) was first established by Johansson [12], by considering a discrete time version of TASEP and using combinatorial arguments. Here we show (1.2) by using the transition probability (or Green's function). A reference for this section is [20].

1.1 Time evolution equation for the transition probability

The transition probability for ASEP with N particles on \mathbb{Z} is the probability that N particles starting from y_{1}, \ldots, y_{N} at time 0 are on sites x_{1}, \ldots, x_{N} at time t. (We assume $x_{i}<x_{i+1}, y_{i}<$ $y_{i+1}, 1 \leq i \leq N-1$.) Let $X_{i}(t), 1 \leq i \leq N$ be the position of the i th particle at time t. Then the transition probability is

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{N} ; t \mid y_{1}, \ldots, y_{N} ; 0\right)=\mathbb{P}\left[X_{i}(t)=x_{i}, 1 \leq i \leq N \mid X_{i}(0)=y_{i}, 1 \leq i \leq N\right] . \tag{1.3}
\end{equation*}
$$

We often omit the dependence on y. In this section we take the time scale s.t. $p+q=1$.
First let us write down the time evolution (Kolmogorov forward equation, master equation) satisfied by the transition probability. The equation for one particle $(N=1)$ case reads

$$
\begin{equation*}
\frac{d}{d t} G(x ; t)=p G(x-1 ; t)+q G(x+1 ; t)-G(x ; t) \tag{1.4}
\end{equation*}
$$

Next for $N=2$, we have to consider two cases separately. When $x_{2}-x_{1} \geq 2$, the forward equation reads

$$
\begin{align*}
\frac{d}{d t} G\left(x_{1}, x_{2} ; t\right)= & p G\left(x_{1}-1, x_{2} ; t\right)+q G\left(x_{1}+1, x_{2} ; t\right)+p G\left(x_{1}, x_{2}-1 ; t\right) \\
& +q G\left(x_{1}, x_{2}+1 ; t\right)-2 G\left(x_{1}, x_{2} ; t\right) \tag{1.5}
\end{align*}
$$

When $x_{2}=x_{1}+1$, due to the exclusion rule, the equation is

$$
\begin{equation*}
\frac{d}{d t} G\left(x_{1}, x_{1}+1 ; t\right)=p G\left(x_{1}-1, x_{1}+1 ; t\right)+q G\left(x_{1}, x_{1}+2 ; t\right)-G\left(x_{1}, x_{2} ; t\right) . \tag{1.6}
\end{equation*}
$$

The initial condition for the transition probability is

$$
\begin{equation*}
G\left(x_{1}, x_{2} ; t \mid y_{1}, y_{2} ; 0\right)=\delta_{x_{1} y_{1}} \delta_{x_{2} y_{2}} . \tag{1.7}
\end{equation*}
$$

The transition probability is determined as the solution to (1.5),(1.6),(1.7). It is a little cumbersome that one has to deal with the two equations (1.5),(1.6) separately. But the second one can be replaced by a boundary condition for $G\left(x_{1}, x_{2} ; t\right)$. Setting $x_{2}=x_{1}+1$ in (1.5) one gets

$$
\begin{align*}
\frac{d}{d t} G\left(x_{1}, x_{1}+1 ; t\right)= & p G\left(x_{1}-1, x_{1}+1 ; t\right)+q G\left(x_{1}+1, x_{1}+1 ; t\right)+p G\left(x_{1}, x_{1} ; t\right) \\
& +q G\left(x_{1}, x_{1}+2 ; t\right)-2 G\left(x_{1}, x_{1}+1 ; t\right) . \tag{1.8}
\end{align*}
$$

Comparing (1.8) with (1.6), we have

$$
\begin{equation*}
p G\left(x_{1}, x_{1}, t\right)+q G\left(x_{1}+1, x_{1}+1 ; t\right)=G\left(x_{1}, x_{1}+1 ; t\right) . \tag{1.9}
\end{equation*}
$$

This means that instead of considering (1.5),(1.6) for $x_{1}<x_{2}$, one can consider (1.5) with the boundary condition (1.9) for $x_{1} \leq x_{2}$ and focus on the case $x_{1}<x_{2}$.

For general N the situation is similar to the $N=2$ case. The main forward equation reads

$$
\begin{align*}
\frac{d}{d t} G\left(x_{1}, \ldots, x_{N} ; t\right)= & \sum_{i=1}^{N}\left(p G\left(\ldots, x_{i}-1, \ldots ; t\right)+q G\left(\ldots, x_{i}+1, \ldots, t\right)\right. \\
& \left.-G\left(\ldots, x_{i}, \ldots ; t\right)\right) . \tag{1.10}
\end{align*}
$$

One has to solve this with the boundary condition

$$
\begin{equation*}
p G\left(\ldots, x_{i}, x_{i}, \ldots ; t\right)+q G\left(\ldots, x_{i}+1, x_{i}+1, \ldots ; t\right)=G\left(\ldots, x_{i}, x_{i+1}, \ldots ; t\right) \tag{1.11}
\end{equation*}
$$

and the initial condition,

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{N} ; t=0\right)=\prod_{i=1}^{N} \delta_{x_{i} y_{i}} . \tag{1.12}
\end{equation*}
$$

1.2 Bethe ansatz for ASEP

Formally the time evolution equation can be written in a form

$$
\begin{equation*}
\frac{d}{d t} G=L^{*} G \tag{1.13}
\end{equation*}
$$

with L the time evolution generator of the process. For solving the eigenvalue problem for L^{*},

$$
\begin{equation*}
L^{*} \Psi=\Lambda \Psi, \tag{1.14}
\end{equation*}
$$

for ASEP, we apply the Bethe ansatz [7], in which assume the form of the eigenfunction to be in the form

$$
\begin{equation*}
\Psi_{z}(x)=\sum_{\sigma \in S_{N}} A_{\sigma} \prod_{j=1}^{N} z_{\sigma_{j}}^{x_{j}} . \tag{1.15}
\end{equation*}
$$

When $N=1$, the equation is

$$
\begin{equation*}
p \Psi(x-1)+q \Psi(x+1)-\Psi(x)=\Lambda \Psi(x), x \in \mathbb{Z} . \tag{1.16}
\end{equation*}
$$

The solution is, with $z \in \mathbb{C}$,

$$
\begin{equation*}
\Psi(x)=\Psi_{z}(x) \tag{1.17}
\end{equation*}
$$

with the eigenvalue

$$
\begin{equation*}
\Lambda=p / z+q z-1=: \epsilon(z) . \tag{1.18}
\end{equation*}
$$

When $N=2$, we wand to solve

$$
\begin{align*}
p \Psi\left(x_{1}-1, x_{2}\right)+q \Psi\left(x_{1}, x_{2}-1\right)-2 \Psi\left(x_{1}, x_{2}\right) & =\Lambda \Psi\left(x_{1}, x_{2}\right), \tag{1.19}\\
p \Psi(x, x)+q \Psi(x+1, x+1) & =\Psi(x, x+1) . \tag{1.20}
\end{align*}
$$

According to the Bethe ansatz (1.15), we make an ansatz that the eigenfunction is given in the form,

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}\right)=\Psi_{z_{1}, z_{2}}\left(x_{1}, x_{2}\right)=A_{12} z_{1}^{x_{1}} z_{2}^{x_{2}}+A_{21} z_{2}^{x_{1}} z_{1}^{x_{2}} \tag{1.21}
\end{equation*}
$$

From (1.19) one sees $\Lambda=\epsilon\left(z_{1}\right)+\epsilon\left(z_{2}\right)$. From (1.20), one can determine

$$
\begin{equation*}
\frac{A_{21}}{A_{12}}=-\frac{p+q z_{1} z_{2}-z_{2}}{p+q z_{1} z_{2}-z_{1}} . \tag{1.22}
\end{equation*}
$$

For general N, A_{σ} can also be written as

$$
\begin{equation*}
A_{\sigma}=\operatorname{sgn} \sigma \frac{\prod_{i<j}\left(p+q \xi_{\sigma(i)} \xi_{\sigma(j)}-(p+q) \xi_{\sigma(i)}\right)}{\prod_{i<j}\left(p+q \xi_{i} \xi_{j}-(p+q) \xi_{i}\right)} . \tag{1.23}
\end{equation*}
$$

Remark: when we consider ASEP on a period lattice of size L, we also have to put the periodic boundary condition on the eigenfunction, from which we get some conditions which z_{i} 's should satisfy. This is called the Bethe ansatz equation (BAE). This is a set of coupled algebraic equations which are usually unsolvable. In these lectures, we mostly consider ASEP on \mathbb{Z}.

The transition probability for ASEP can be constructed by taking a linear combination of eigenfunctions appropriately. It is given by [31]

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{N} ; t \mid y_{1}, \ldots, y_{N} ; 0\right)=\sum_{\sigma \in S_{N}} \int_{C_{r}} \ldots \int_{C_{r}} d \xi_{1} \ldots d \xi_{N} A_{\sigma} \prod_{i=1}^{N} \xi_{\sigma(i)}^{x_{i}-y_{\sigma(i)}-1} e^{\sum_{i=1}^{N} \epsilon\left(\xi_{i}\right) t} \tag{1.24}
\end{equation*}
$$

where C_{r} is a contour enclosing the origin anticlockwise with a radius small enough that all the poles in A_{σ} are not included in $C_{r} . \epsilon(\xi)$ is defined in (1.18). It is highly nontrivial to utilize this formula to study asymptotic behavior of ASEP [30-32].

1.3 Determinantal formula for TASEP

For TASEP, the Bethe eigenfunction simplifies a lot and the transition probability can be written as a single determinant [26].

Proposition 1.1.

$$
\begin{equation*}
G\left(x_{1}, \ldots, x_{N} ; t \mid y_{1}, \ldots, y_{N} ; 0\right)=\operatorname{det}\left(F_{k-j}\left(x_{k}-y_{j} ; t\right)\right)_{1 \leq j, k \leq N} \tag{1.25}
\end{equation*}
$$

Here the function $F_{n}(x, t)$ appearing as a matrix element of the determinant is

$$
F_{n}(x, t)=\frac{1}{2 \pi i} \int_{0,1} d z \frac{1}{z^{x+1}}(1-1 / z)^{-n} e^{-(1-z) t}
$$

where the contour enclosing the poles at $z=0,1$ of the integrand anticlockwise
The formula is found by using Bethe ansatz, one can prove it directly. To prove the formula it is useful to list a few properties of $F_{n}(x, t)$ [excercise].

Lemma 1.2. (i)

$$
\begin{equation*}
F_{n+1}(x, t)=\sum_{y=x}^{\infty} F_{n}(y, t) \tag{1.26}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\frac{d}{d t} F_{n}(x, t)=F_{n}(x-1, t)-F_{n}(x, t) \tag{1.27}
\end{equation*}
$$

Proof of Prop. 1.1 It is enough to check the forward equation and the initial conditions. Here we only consider the $N=2$ case in which (1.25) reads

$$
G\left(x_{1}, x_{2} ; t\right)=\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{2}-y_{2} ; t\right) \tag{1.28}\\
F_{-1}\left(x_{1}-y_{2} ; t\right) & F_{0}\left(x_{2}-y_{2} ; t\right)
\end{array}\right| .
$$

For our special case where $p=1, q=0,(1.5),(1.9),(1.7)$ read

$$
\begin{align*}
\frac{d}{d t} G\left(x_{1}, x_{2} ; t\right) & =G\left(x_{1}-1, x_{2} ; t\right)+G\left(x_{1}, x_{2}-1 ; t\right)-2 G\left(x_{1}, x_{2} ; t\right), \tag{1.29}\\
G\left(x_{1}, x_{1}, t\right) & =G\left(x_{1}, x_{1}+1 ; t\right), \tag{1.30}\\
G\left(x_{1}, x_{2} ; t \mid y_{1}, y_{2} ; 0\right) & =\delta_{x_{1} y_{1}} \delta_{x_{2} y_{2}} . \tag{1.31}
\end{align*}
$$

We check (1.28) satisfies them. First about (1.29), we see

$$
\begin{align*}
\frac{d}{d t} G\left(x_{1}, x_{2} ; t\right) & =\left|\begin{array}{cc}
\frac{d}{d d} F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{2}-y_{1} ; t\right) \\
\frac{d}{d t} F_{-1}\left(x_{1}-y_{2} ; t\right) & F_{0}\left(x_{2}-y_{2} ; t\right)
\end{array}\right|+\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; t\right) & \frac{d}{d t} F_{1}\left(x_{2}-y_{1} ; t\right) \\
F_{-1}\left(x_{1}-y_{2} ; t\right) & \frac{d}{d t} F_{0}\left(x_{2}-y_{2} ; t\right)
\end{array}\right| \\
& =\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1}-1 ; t\right)-F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{2}-y_{1} ; t\right) \\
F_{-1}\left(x_{1}-y_{2} ; t\right)-F_{-1}\left(x_{1}-y_{2}-1 ; t\right) & F_{0}\left(x_{2}-y_{2} ; t\right)
\end{array}\right| \\
& +\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{2}-y_{1} ; t\right)-F_{1}\left(x_{2}-y_{1}-1 ; t\right) \\
F_{-1}\left(x_{1}-y_{2} ; t\right) & F_{0}\left(x_{2}-y_{2} ; t\right)-F_{0}\left(x_{2}-y_{2}-1 ; t\right)
\end{array}\right| \\
& =G\left(x_{1}-1, x_{2} ; t\right)+G\left(x_{1}, x_{2}-1 ; t\right)-2 G\left(x_{1}, x_{2} ; t\right) . \tag{1.32}
\end{align*}
$$

For (1.30), we see

$$
\begin{align*}
G\left(x_{1}, x_{1} ; t\right) & =\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{1}-y_{1} ; t\right) \\
F_{-1}\left(x_{1}-y_{2} ; t\right) & F_{0}\left(x_{1}-y_{2} ; t\right)
\end{array}\right| \\
& =\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; t\right) & F_{1}\left(x_{1}-y_{1} ; t\right)-F_{0}\left(x_{1}-y_{1} ; t\right) \\
F_{-1}\left(x_{1}-y_{2} ; t\right) & F_{0}\left(x_{1}-y_{2} ; t\right)-F_{-1}\left(x_{1}-y_{2} ; t\right)
\end{array}\right| \\
& =G\left(x_{1}, x_{1}+1 ; t\right) \tag{1.33}
\end{align*}
$$

where in the second last equality we used (1.26).
About the initial condition, one sees

$$
G\left(x_{1}, x_{2} ; t=0\right)=\left|\begin{array}{cc}
F_{0}\left(x_{1}-y_{1} ; 0\right) & F_{1}\left(x_{2}-y_{2} ; 0\right) \tag{1.34}\\
F_{-1}\left(x_{1}-y_{2} ; 0\right) & F_{0}\left(x_{2}-y_{2} ; 0\right)
\end{array}\right|=\left|\begin{array}{cc}
\delta_{x_{1} y_{1}} & \sum_{z=x_{2}}^{\infty} \delta_{x_{2} y_{1}} \\
\delta_{x_{1} y_{2}}-\delta_{x_{1}, y_{2}+1} & \delta_{x_{2} y_{2}}
\end{array}\right| .
$$

Since $x_{2} \geq y_{2}>y_{1}$, the second term is zero.
Using these one can show that the determinant in (1.25) satisfies (1.5),(1.9), (1.7), i.e. it gives the transition probability for TASEP.

1.4 Charlier ensemble representation

In this section we get (1.2). First note that the distribution of the current can be obtained by taking an appropriate sum of the transition probability.

$$
\begin{equation*}
\mathbb{P}[N(t) \geq N]=\mathbb{P}\left[x_{1}(t) \geq 1\right]=\sum_{1 \leq x_{1}<\cdots<x_{N}} G(x, t) \tag{1.35}
\end{equation*}
$$

For $N=2$, we see

$$
\begin{align*}
\mathbb{P}\left[x_{1}(t) \geq 1\right] & =\sum_{1 \leq x_{1}<x_{2}}\left|\begin{array}{cc}
F_{0}\left(x_{1}+1 ; t\right) & F_{1}\left(x_{2}+1 ; t\right) \\
F_{-1}\left(x_{1} ; t\right) & F_{0}\left(x_{2} ; t\right)
\end{array}\right| \\
& =\sum_{1 \leq x_{1}<x_{2}} \sum_{y_{2}=x_{2}}^{\infty}\left|\begin{array}{cc}
F_{0}\left(x_{1}+1 ; t\right) & F_{0}\left(y_{2}+1 ; t\right) \\
F_{-1}\left(x_{1} ; t\right) & F_{-1}\left(y_{2} ; t\right)
\end{array}\right| \tag{1.36}
\end{align*}
$$

Writing the determinant in the last expression as $f\left(x_{1}, y_{2}\right)$, this is calculated as

$$
\begin{align*}
& \sum_{x_{1}=1}^{\infty} \sum_{x_{2}=x_{1}+1}^{\infty} \sum_{y_{2}=x_{2}}^{\infty} f\left(x_{1}, y_{2}\right)=\sum_{x_{1}=1}^{\infty} \sum_{y_{2}=x_{1}+1}^{\infty} \sum_{x_{2}=x_{1}+1}^{y_{2}} f\left(x_{1}, y_{2}\right) \tag{1.37}\\
= & \sum_{x_{1}=1}^{\infty} \sum_{y_{2}=x_{1}+1}^{\infty}\left(y_{2}-x_{1}\right) f\left(x_{1}, y_{2}\right)=\sum_{x_{1}=1}^{\infty} \sum_{x_{2}=x_{1}+1}^{\infty}\left(x_{2}-x_{1}\right) f\left(x_{1}, x_{2}\right) . \tag{1.38}
\end{align*}
$$

Here

$$
\begin{align*}
f\left(x_{1}, x_{2}\right) & =\left|\begin{array}{cc}
F_{0}\left(x_{1}+1 ; t\right) & F_{0}\left(x_{2}+1 ; t\right) \\
F_{-1}\left(x_{1} ; t\right) & F_{-1}\left(x_{2} ; t\right)
\end{array}\right|=\left|\begin{array}{cc}
F_{0}\left(x_{1}+1 ; t\right) & F_{0}\left(x_{2}+1 ; t\right) \\
F_{0}\left(x_{1} ; t\right)-F_{0}\left(x_{1}+1 ; t\right) & F_{0}\left(x_{2} ; t\right)-F_{0}\left(x_{2}+1 ; t\right)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{t^{x_{1}+1}}{\left(x_{1}+1\right)!} e^{-t} & \frac{t^{x_{2}+1}}{\left(x_{2}+1\right)!} e^{-t} \\
\frac{t_{1}+1}{\left(x_{1}\right)!} e^{-t} & \frac{\left.t_{2} x_{2}\right)}{\left(x_{2}\right)!} e^{-t}
\end{array}\right|=\frac{t^{x_{1}+x_{2}+1}}{\left(x_{1}+1\right)!\left(x_{2}+1\right)!} e^{-2 t} . \tag{1.39}
\end{align*}
$$

Substituting this into (1.38) one finds

$$
\begin{equation*}
\mathbb{P}[N(t) \geq 2]=\sum_{x_{1}=1}^{\infty} \sum_{x_{2}=x_{1}+1}^{\infty}\left(x_{1}-x_{2}\right)^{2} \frac{t^{x_{1}+x_{2}+1}}{\left(x_{1}+1\right)!\left(x_{2}+1\right)!} e^{-2 t}=\frac{1}{2 t} \sum_{x_{1}=2}^{\infty} \sum_{x_{2}=2}^{\infty}\left(x_{1}-x_{2}\right)^{2} \frac{t^{x_{1}+x_{2}}}{x_{1}!x_{2}!} e^{-2 t} \tag{1.40}
\end{equation*}
$$

which is nothing but the $N=2$ case of (1.2). Generalization to general N is left as an exsersize.

1.5 Schur measure and process

The Schur measure is a measure on the set of partitions, in the form

$$
\begin{equation*}
\frac{1}{Z} s_{\lambda}\left(a_{1}, \cdots, a_{N}\right) s_{\lambda}\left(b_{1}, \cdots, b_{M}\right) \tag{1.41}
\end{equation*}
$$

Here s_{λ} is the Schur function, see Appendix C. By the Cauchy identity (C.23), the normalization here is

$$
\begin{equation*}
Z=\prod_{j, k} \frac{1}{1-a_{j} b_{k}} . \tag{1.42}
\end{equation*}
$$

The Schur process is a measure on GT_{N}, in the form

$$
\begin{equation*}
\frac{1}{Z} s_{\lambda^{(1)}}\left(a_{1}\right) s_{\lambda^{(2)} / \lambda^{(1)}}\left(a_{2}\right) \cdots s_{\lambda^{(N)}}\left(a_{N}\right) s_{\lambda^{(N)}}\left(b_{1}, \cdots, b_{M}\right) \tag{1.43}
\end{equation*}
$$

By (C.21), the marginal measure about $\lambda^{(N)}$ is nothing but the Schur measure (1.41).
There are various variants of the Schur measure and process, in which $s_{\lambda}\left(b_{1}, \cdots, b_{M}\right)$ is replaced by a Schur function related to a more general specialization ρ. Such measures appear for Markov dynamics on GT_{N} and TASEP can be realized as a marginal dynamics on the left diagonal $\lambda_{i}^{i}, 1 \leq i \leq N$.

Because the Schur function is written as a determinant by the Jacobi-Trudi formula (C.19), the Schur measure can be studied by the same methods as for GUE.

A Formulation of lattice gases

In this section we explain the formulation of the lattice gas on \mathbb{Z} for the case of exclusion process. We do not give the details but refer the readers to existing literature [14-16, 27].

Let us introduce a notation,

$$
\eta(x)= \begin{cases}0, & \text { site } x(\in \mathbb{Z}) \text { is empty } \tag{A.1}\\ 1, & \text { site } x(\in \mathbb{Z}) \text { is occupied }\end{cases}
$$

Our state space is $X=\{0,1\}^{\mathbb{Z}}$, which is compact in the product topology. $\eta(\in X)$ is called a configuration (of particles). We set

$$
\eta^{x y}(u)= \begin{cases}\eta(y), & \text { if } u=x \tag{A.2}\\ \eta(x), & \text { if } u=y \\ \eta(u), & \text { if } u \neq x, y\end{cases}
$$

Let us set $C(X)$ to be the space of continuous functions on X. Let us consider a Feller process $\eta_{t}:[0, \infty) \rightarrow X$ for which $E^{\eta} f\left(\eta_{t}\right) \in C(X)$ for any $f \in C(X)$. Let P^{μ} be the distribution of the process with initial measure μ and E^{μ} be the corresponding expectation. We sometimes consider the situation in which the process starts from a single configuration η for which case we abuse the notation like P^{η} and E^{η}. For η_{t}, one can define the semigroup $S(t)$ on $C(X)$ by

$$
\begin{equation*}
S(t) f(\eta)=E^{\eta} f\left(\eta_{t}\right), \quad f \in C(X) \tag{A.3}
\end{equation*}
$$

It is known that there is a one-to-one correspondence between the semigroup $S(t)$ and the generator L defined by

$$
\begin{equation*}
L f=\lim _{t \rightarrow 0} \frac{S(t) f-f}{t} \tag{A.4}
\end{equation*}
$$

The lattice gas can be constructed by giving its generator. Let $c(x, y, \eta)$ be the rate of exchange of the occupancies at x and y. The generator of the process is given by introducing an operator

$$
\begin{equation*}
L f(\eta)=\frac{1}{2} \sum_{x, y \in \mathbb{Z}} c(x, y, \eta)\left[f\left(\eta^{x y}\right)-f(\eta)\right] \tag{A.5}
\end{equation*}
$$

for f a cylinder function (which depends only on finitely many coordinates) and then taking its closure. For this construction to work the rate $c(x, y, \eta)$ should satisfy certain conditions but here we simply assume that they are satisfied.

In the $t \rightarrow \infty$ limit, the system approaches the stationary measure μ, which is defined by

$$
\begin{equation*}
E^{\mu}[L f]=0 \tag{A.6}
\end{equation*}
$$

For the ASEP the operator L on the cylinder set is given by

$$
\begin{equation*}
L f(\eta)=\frac{1}{2} \sum_{x \in \mathbb{Z}}(p \eta(x)(1-\eta(x+1))+q(1-\eta(x)) \eta(x+1))\left[f\left(\eta^{x y}\right)-f(\eta)\right] \tag{A.7}
\end{equation*}
$$

For ASEP on \mathbb{Z}, there are two series of the stationary measures. One is the product measure with $E[\eta(x)]=1 /\left(1+(q / p)^{x}\right)$ and its translations. The other is the Bernoulli measure with density $\rho, 0 \leq \rho \leq 1$. It is known that these exhaust the all extremal stationary measures.

B GUE and Tracy-Widom distribution [3, 10, 17]

In random matrix theory, Gaussian ensembles play a prominent role.
Definition B.1. (Gaussian ensembles)
In Gaussian ensembles, the measure for $N \times N$ matrix H is given in the form,

$$
\begin{equation*}
P(H) d H=\frac{1}{Z} e^{-\frac{\beta}{2} \operatorname{Tr} H^{2}} d H, \quad \beta=1,2,4 . \tag{B.1}
\end{equation*}
$$

For $\operatorname{GOE}(\beta=1$, Gaussian orthogonal ensemble(GOE)), H is taken to be a real symmetric matrix and the measure $d H$ is $d H=\prod_{j=1}^{N} d H_{j j} \prod_{j<l} d H_{j l}$. For $\operatorname{GUE}(\beta=2$, Gaussian unitary ensemble(GUE)), H is taken to be a hermitian matrix and the measure $d H$ is $d H=$ $\prod_{j=1}^{N} d H_{j j} \prod_{j<l} d H_{j l}^{R} \prod_{j<l} d H_{j l}^{I}$ where $H_{j l}^{R}$ and $H_{j l}^{I}$ denotes the real and imaginary part of $H_{j l}$ respectively. $G S E(\beta=4)$ means the Gaussian symplectic ensemble(GSE)). For a precise definition see a reference.

For Guassian ensembles, the joint eigenvalue density can be written down explicitly.
Proposition B.2. The probability density of eigenvalues, $x_{i}, 1 \leq i \leq N,\left(x_{i} \leq x_{i+1}, 1 \leq i \leq\right.$ $N-1)$ is

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{Z} \prod_{j<l}\left|x_{l}-x_{j}\right|^{\beta} \prod_{j=1}^{N} e^{-\frac{\beta}{2} x_{j}^{2}}, \quad \beta=1,2,4 . \tag{B.2}
\end{equation*}
$$

For a proof see for instance [3].
By using this joint distribution one can in principle study all properties of the eigenvalues of Gaussian ensembles. For example, the Wigner's semin-circle law can be derived. In our discussions, the probabilistic properties of the largest eigenvalue are important. From the above joint distribution, one finds that the distribution function of the largest eigenvalue of GUE can be written in the following N fold integral.
Corollary B.3. The distribution function of the largest eigenvalue $x_{\max }$

$$
\begin{equation*}
\mathbb{P}_{N 2}\left[x_{\max } \leq u\right]=\frac{1}{Z} \int_{(-\infty, u]^{N}} \prod_{1 \leq j<l \leq N}\left|x_{l}-x_{j}\right|^{\beta} \prod_{j=1}^{N} e^{-\frac{\beta}{2} x_{j}^{2}} d x_{1} \cdots d x_{N} . \tag{B.3}
\end{equation*}
$$

We are interested in the large N asymptotics of this quantity. This N fold integral expression is not very suited for doing this. We rewrite it into the Fredholm determinant. For the moment let us focus on the $\beta=2$ case.

By rewriting the determinant (using Heine identity below and $\operatorname{det}(1+A B)=\operatorname{det}(1+B A)$), one can show

Proposition B. 4 .

$$
\begin{equation*}
\mathbb{P}_{N 2}\left[x_{\max } \leq u\right]=\operatorname{det}\left(1-\chi_{u} K_{N 2} \chi_{u}\right) \tag{B.4}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{N 2}(x, y)=e^{-\frac{x^{2}+y^{2}}{2}} \sum_{n=0}^{N-1} \frac{H_{n}(x) H_{n}(y)}{\sqrt{\pi} 2^{n} n!} . \tag{B.5}
\end{equation*}
$$

Here $H_{n}(x)$ is the nth Hermite polynomial

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} . \tag{B.6}
\end{equation*}
$$

Note that the kernel (B.5) can be written in the form $K(x, y)=\sum_{n=0}^{N-1} \phi_{n}(x) \psi_{n}(y)$ if we set $\phi_{n}(x)=\psi_{n}(x)=\frac{e^{-x^{2} / 2}}{\pi^{1 / 4} \sqrt{2^{n} n!}} H_{n}(x)$. In addition, by using the integral representations of the Hermite polynomial,

$$
\begin{equation*}
H_{n}(x)=\frac{e^{x^{2}} 2^{n}}{\sqrt{\pi} i} \int_{i \mathbb{R}} d z e^{z^{2}-2 x z} z^{n}=\frac{n!}{2 \pi i} \int_{0} \frac{d z}{z^{n+1}} e^{2 x z-z^{2}} \tag{B.7}
\end{equation*}
$$

one can find a double contour integral formula of the kernel,

$$
\begin{equation*}
K_{N 2}(x, y)=2 e^{-y^{2}} \int_{i \mathbb{R}} d z \int_{0} d w \frac{z^{N}}{w^{N}} \frac{e^{z^{2}-2 z x-w^{2}+2 w y}}{z-w} \tag{B.8}
\end{equation*}
$$

Now it has become easier to consider the large N asymptotics. The basic asymptotics we need is that of the Hermite polynomials [28]. The Airy function $\operatorname{Ai}(x)$ is defined by

$$
\begin{equation*}
\operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty+i \epsilon}^{+\infty+i \epsilon} e^{i x z+\frac{i z^{3}}{3}} d z, \epsilon>0 \tag{B.9}
\end{equation*}
$$

Let us write

$$
\begin{equation*}
\phi_{n}(x)=\frac{H_{n}(x) e^{-x^{2} / 2}}{\pi^{1 / 4} \sqrt{2^{n} n!}} \tag{B.10}
\end{equation*}
$$

Then for the scaling $n=N-N^{1 / 3} \lambda, x=\sqrt{2 N}+\frac{\xi}{\sqrt{2} N^{1 / 6}}$, we have

$$
\begin{equation*}
\phi_{N}(x) \sim 2^{1 / 4} N^{-1 / 12} \operatorname{Ai}(\xi+\lambda) \tag{B.11}
\end{equation*}
$$

This asymptotics can be shown by applying saddle point method to the integral representations (B.7).

To describe the results we introduce a kernel and the corresponding distribution.
Definition B.5. The Airy kernel $K_{2}(x, y)$ is defined by

$$
\begin{equation*}
K_{2}(x, y)=\frac{\operatorname{Ai}(x) \operatorname{Ai}^{\prime}(y)-\operatorname{Ai}(y) \operatorname{Ai}^{\prime}(x)}{x-y}=\int_{0}^{\infty} \operatorname{Ai}(x+\lambda) \operatorname{Ai}(y+\lambda) d \lambda \tag{B.12}
\end{equation*}
$$

The GUE Tracy-Widom distribution $F_{2}(s)$ [29] is defined by

$$
\begin{equation*}
F_{2}(s)=\operatorname{det}\left(1-\chi_{s} K_{2} \chi_{s}\right)_{L^{2}(\mathbb{R})} \tag{B.13}
\end{equation*}
$$

This is the limiting distribution for the appropriately scaled largest eigenvalue in GUE.
Theorem B.6.

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}_{N 2}\left[\left(x_{\max }-\sqrt{2 N}\right) \sqrt{2} N^{1 / 6} \leq s\right]=F_{2}(s) \tag{B.14}
\end{equation*}
$$

This follows from

Proposition B.7.

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{\sqrt{2} N^{1 / 6}} K_{N 2}\left(\sqrt{2 N}+\frac{\xi_{1}}{\sqrt{2} N^{1 / 6}}, \sqrt{2 N}+\frac{\xi_{2}}{\sqrt{2} N^{1 / 6}}\right)=K_{2}\left(\xi_{1}, \xi_{2}\right) \tag{B.15}
\end{equation*}
$$

which in turn is a consequence of (B.11).
So far our discussions are only for the GUE. One can generalize the discussions to other two cases, GOE,GSE. The limiting distribution is denoted by F_{1}, F_{4}

Theorem B.8.

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}_{N \beta}\left[\left(x_{\max }-\sqrt{2 N}\right) \sqrt{2} N^{1 / 6} \leq s\right]=F_{\beta}(s), \quad \beta=1,4 . \tag{B.16}
\end{equation*}
$$

Before ending the section we state
Proposition B.9. (Heine identity)

$$
\begin{align*}
& \int \operatorname{det}\left(\Phi_{j}\left(x_{l+1}\right)\right)_{0 \leq j, l \leq N-1} \operatorname{det}\left(\Psi_{j}\left(x_{l+1}\right)\right)_{0 \leq j, l \leq N-1} d x_{1} \cdots d x_{N} \\
= & N!\operatorname{det}\left(\int \Phi_{j}(x) \Psi_{l}(x) d x\right)_{0 \leq j, l \leq N-1} . \tag{B.17}
\end{align*}
$$

This is seen as follows

$$
\begin{align*}
& \operatorname{det}\left(\int \Phi_{j}(x) \Psi_{l}(x) d x\right)_{0 \leq j, l \leq N-1}=\int d x_{1} \cdots d x_{N} \operatorname{det}\left(\Phi_{i}\left(x_{j}\right) \Psi_{j}\left(x_{i}\right)\right) \\
= & \int d x_{1} \cdots d x_{N} \prod_{i} \Phi_{i}\left(x_{i}\right) \operatorname{det}\left(\Psi_{j}\left(x_{i}\right)\right)=\int d x_{1} \cdots d x_{N} \prod_{i} \Phi_{i}\left(x_{\sigma(i)}\right) \operatorname{det}\left(\Psi_{j}\left(x_{\sigma(i)}\right)\right) \\
= & \int d x_{1} \cdots d x_{N} \operatorname{sgn} \sigma \prod_{\mathrm{i}} \Phi_{\mathrm{i}}\left(\mathrm{x}_{\sigma(\mathrm{i})}\right) \operatorname{det}\left(\Psi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)\right) \\
= & \frac{1}{N!} \int d x_{1} \cdots d x_{N} \sum_{\sigma} \operatorname{sgn} \sigma \prod_{\mathrm{i}} \Phi_{\mathrm{i}}\left(\mathrm{x}_{\sigma(\mathrm{i})}\right) \operatorname{det}\left(\Psi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}}\right)\right) \\
= & \int d x_{1} \cdots d x_{N} \operatorname{det}\left(\Phi_{i}\left(x_{j}\right)\right) \operatorname{det}\left(\Psi_{i}\left(x_{j}\right)\right) . \tag{B.18}
\end{align*}
$$

C Partition, Schur function, etc

First a partition is an n-tuple $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $n \in \mathbb{N}, \lambda_{j} \in \mathbb{Z}_{+}, 1 \leq j \leq n$ s.t. $\lambda_{1} \geq \ldots \geq$ $\lambda_{n} . n$ is called the length of the partition and is denoted as $\ell(\lambda)$. The set of all partitions of length n is denoted by \mathcal{P}_{n}. A partition λ can also be represented (and identified) as a Young diagram with n rows of length $\lambda_{1}, \ldots, \lambda_{n}$. The transpose λ^{\prime} is the partition of length λ_{1} defined as $\lambda_{i}^{\prime}=\#\left\{j \in \mathbb{Z}_{+} \mid \lambda_{j} \geq i\right\}, 1 \leq i \leq \lambda_{1}$. For two partitions $\lambda \in \mathcal{P}_{n}, \mu \in \mathcal{P}_{m}$ s.t. $m \leq n$ and $\lambda_{i}-\mu_{i} \geq 0,1 \leq i \leq n$ (with the understanding $\mu_{i} \equiv 0, m<i \leq n$), a pair (λ, μ) is called a skew diagram and is denoted by λ / μ, with $|\lambda / \mu|=|\lambda|-|\mu|$. We say that λ / μ is a horizontal strip iff in each column λ / μ has at most one box, i.e., $\mu_{i} \leq \lambda_{i} \leq \mu_{i-1}$. A column-strict (skew) Young tableaux is a sequence of partitions

$$
(\mu=) \lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(N)}(=\lambda)
$$

such that $\lambda^{(i)} / \lambda^{(i-1)}, 1 \leq i \leq N$ is a horizontal strip. If $\mu=\phi$, this is equivalent to the semi-standard Young tableaux with entries from $\{1, \cdots, N\}$. Put i to the horizontal strip of $\lambda^{(i)} / \lambda^{(i-1)}$.
(Skew) Schur function with N variables $x=\left(x_{1}, \ldots, x_{N}\right)$ for a skew Young diagram λ / μ is defined as

$$
s_{\lambda / \mu}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} x^{T}, \quad x^{T}=\prod_{i=1}^{N} x_{i}^{\left|\lambda^{(i)}-\lambda^{(i-1)}\right|}
$$

where the sum over T is wrt column strict tableaux with $\lambda^{(0)}=\mu, \lambda^{(N)}=\lambda$.
When $N=1$

$$
\begin{aligned}
s_{\lambda / \mu}\left(x_{1}\right) & = \begin{cases}x_{1}^{|\lambda-\mu|} & \text { If } \mu_{i} \leq \lambda_{i} \leq \mu_{i-1} \\
0 & \text { otherwise }\end{cases} \\
s_{\lambda^{\prime} / \mu^{\prime}}\left(x_{1}\right) & = \begin{cases}x_{1}^{\left|\lambda^{\prime}-\mu^{\prime}\right|} & \text { If }\left(\lambda_{j}=\mu_{j} \text { or } \lambda_{j}=\mu_{j}+1\right) \& \lambda_{i} \geq \mu_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The (skew) Schur function can be written as a single determinant by the Jacobi-Trudi formula,

$$
\begin{equation*}
s_{\lambda / \mu}(x)=\operatorname{det}\left(h_{\lambda_{i}-\mu_{j}-i+j}(x)\right)_{1 \leq i, j \leq \ell(\lambda)} \tag{C.19}
\end{equation*}
$$

where $h_{k}(x)=\sum_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq N} x_{i_{1}} \cdots x_{i_{k}}$ is the complete homogeneous symmetric function. For the case of one variable $h_{k}\left(x_{1}\right)=x_{1}^{k} 1_{k \geq 0}$.

Properties of Schur function.

$$
\begin{align*}
\sum_{\mu} s_{\mu / \lambda}(x) s_{\mu / \nu}(y) & =\sum_{\tau} s_{\nu / \tau}(x) s_{\lambda / \tau}(y) \Pi(x, y) \tag{C.20}\\
\sum_{\lambda} s_{\lambda}(x) s_{\mu / \lambda}(y) & =s_{\mu}(x, y) \tag{C.21}
\end{align*}
$$

where

$$
\begin{equation*}
\Pi(x, y)=\prod_{i=1}^{N} \prod_{j=1}^{M} \frac{1}{1-x_{i} y_{j}} \tag{C.22}
\end{equation*}
$$

Setting $\lambda=\nu=\phi$ in the first equality, we get the Cauchy identity,

$$
\begin{equation*}
\sum_{\mu} s_{\mu}(x) s_{\mu}(y)=\Pi(x, y) \tag{C.23}
\end{equation*}
$$

The Gelfand-Tsetlin cone is defined to be

$$
\mathrm{GT}_{N}:=\left\{\lambda_{i}^{(j)}, 1 \leq i \leq j \leq N \mid \lambda_{i}^{(j)} \in \mathbb{N}, \lambda_{i}^{(j-1)} \leq \lambda_{i}^{(j)} \leq \lambda_{i-1}^{(j-1)}\right\}
$$

Each $\lambda^{(j)}=\left\{\lambda_{i}^{(j)}, 1 \leq i \leq j\right\}, 1 \leq j \leq N$ is a Young diagram and an element of GT_{N} denoted by $\underline{\lambda}$ is considered as consisting of these N Young diagrams $\underline{\lambda}=\left(\lambda^{(1)}, \ldots, \lambda^{(N)}\right)$ and is represented as an array of a triangular shape.

D LUE formula for TASEP with step initial condition

In [12], the following LUE formula was shown.

Figure 2: Gelfand-Tsetlin cone

Proposition D.1.

$$
\begin{equation*}
\mathbb{P}[N(t) \geq N]=\frac{1}{Z_{N 2}^{\prime}} \int_{[0, t]^{N}} \prod_{1 \leq j<k \leq N}\left(x_{j}-x_{k}\right)^{2} \prod_{j=1}^{N} e^{-x_{j}} d x_{1} \ldots d x_{N} \tag{D.24}
\end{equation*}
$$

$Z_{N 2}^{\prime}$ is a normalization.
The similarity of this expression to (B.3) is obvious.
The formula can be derived using the transition probability [1, 18] One can show [18]
Proposition D.2. Under the condition $M>y_{N}-y_{1}$,

$$
\begin{align*}
& \mathbb{P}\left[X_{1}(t) \geq y_{1}+M\right] \\
= & \sum_{y_{1}+M \leq x_{1}<x_{2}<\cdots<x_{N}} G\left(x_{1}, x_{2}, \cdots, x_{N} ; t \mid y_{1}, y_{2}, \cdots, y_{N} ; 0\right) \\
= & \frac{1}{\prod_{j=1}^{N} j!} \int_{[0, t]^{N}} d t_{1} \cdots d t_{N} \prod_{1 \leq j<k \leq N}\left(t_{k}-t_{j}\right) \operatorname{det}\left(F_{-j+1}\left(y_{1}-y_{j}+M-1 ; t_{N-k+1}\right)\right) . \tag{D.25}
\end{align*}
$$

The step initial condition corresponds to setting $y_{j}=-j+1, j=1, \cdots, N$. In this case (D.25) reduces to (D.24). Here we only see how the computation proceeds for $N=2$ with
step i.c.

$$
\begin{align*}
\mathbb{P}[N(t) \geq 2] & =\sum_{1 \leq x_{1}<x_{2}} G\left(x_{1}, x_{2} ; t \mid y_{1}=-1, y_{2}=0 ; 0\right) \\
& =\left|\begin{array}{ll}
F_{1}(2 ; t) & F_{2}(3 ; t) \\
F_{0}(1 ; t) & F_{1}(2 ; t)
\end{array}\right|=\int_{0}^{t} d t_{2} \int_{0}^{t} d s\left|\begin{array}{cc}
F_{0}\left(1 ; t_{2}\right) & F_{1}(2 ; s) \\
F_{-1}\left(0 ; t_{2}\right) & F_{0}(1 ; s)
\end{array}\right| \\
& =\int_{0}^{t} d t_{2} \int_{0}^{t} d s \int_{0}^{s} d t_{1}\left|\begin{array}{cc}
F_{0}\left(1 ; t_{2}\right) & F_{0}\left(1 ; t_{1}\right) \\
F_{-1}\left(0 ; t_{2}\right) & F_{-1}\left(0 ; t_{1}\right)
\end{array}\right| \\
& =\int_{0}^{t} d t_{2} \int_{0}^{t} d s\left(t-t_{1}\right)\left|\begin{array}{cc}
F_{0}\left(1 ; t_{2}\right) & F_{0}\left(1 ; t_{1}\right) \\
F_{-1}\left(0 ; t_{2}\right) & F_{-1}\left(0 ; t_{1}\right)
\end{array}\right| \\
& =\frac{1}{2} \int_{0}^{t} d t_{2} \int_{0}^{t} d s\left(t_{2}-t_{1}\right)\left|\begin{array}{cc}
F_{0}\left(1 ; t_{2}\right) & F_{0}\left(1 ; t_{1}\right) \\
F_{-1}\left(0 ; t_{2}\right) & F_{-1}\left(0 ; t_{1}\right)
\end{array}\right| \\
& =\frac{1}{2} \int_{0}^{t} d t_{2} \int_{0}^{t} d s\left(t_{2}-t_{1}\right)\left|\begin{array}{cc}
F_{0}\left(1 ; t_{2}\right) & F_{0}\left(1 ; t_{1}\right) \\
F_{0}\left(0 ; t_{2}\right) & F_{0}\left(0 ; t_{1}\right)
\end{array}\right| \\
& =\frac{1}{2} \int_{0}^{t} d t_{2} \int_{0}^{t} d s\left(t_{2}-t_{1}\right)\left|\begin{array}{cc}
t_{2} e^{-t_{2}} & t_{1} e^{-t_{2}} \\
e^{-t_{2}} & e^{-t_{1}}
\end{array}\right| \\
& =\frac{1}{2} \int_{0}^{t} d t_{2} \int_{0}^{t} d s\left(t_{2}-t_{1}\right)^{2} e^{-t_{1}-t_{2} .} \tag{D.26}
\end{align*}
$$

The computation can be generalized to arbitrary N and in this way one can arrive at (D.24).

E Some q-functions and q-formulas

In this appendix, we summarize a few q-notations, q-functions and q-formulas. The first is the q-Pochhammer symbol, or the q shifted factorial. For $|q|<1$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
(a ; q)_{\infty}=\prod_{n=0}^{\infty}\left(1-a q^{n}\right), \quad(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}} \tag{E.27}
\end{equation*}
$$

The q-binomial theorem will be useful in various places in the discussions,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}},|z|<1 \tag{E.28}
\end{equation*}
$$

In particular the $a=0$ case appears in many applications. Another q-binomial formula reads (see e.g. Cor.10.2.2.(b) in [4])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n-1) / 2}}{(q ; q)_{n}} z^{n}=(z ; q)_{\infty} \tag{E.29}
\end{equation*}
$$

There is yet another version of the q-binomial theorem (see e.g. Cor.10.2.2.(c) in [4]),

$$
\begin{equation*}
\sum_{k=0}^{\ell} \frac{(-1)^{k} q^{k(k-1) / 2}(q ; q)_{\ell}}{(q ; q)_{k}(q ; q)_{\ell-k}} x^{k}=(1-x)(1-x q) \cdots\left(1-x q^{\ell-1}\right) \tag{E.30}
\end{equation*}
$$

The q-exponential function, denoted as $e_{q}(z)$ is defined to be

$$
\begin{equation*}
e_{q}(z):=\frac{1}{((1-q) z ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(1-q)^{n}}{(q ; q)_{n}} z^{n} \tag{E.31}
\end{equation*}
$$

The second equality is by the above q-binomial theorem (E.28). From the series expansion expression, it is easy to see that this tends to the usual exponential function in the $q \rightarrow 1$ limit.

The q-Gamma function $\Gamma_{q}(x)$ is defined by

$$
\begin{equation*}
\Gamma_{q}(x)=(1-q)^{1-x} \frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}} . \tag{E.32}
\end{equation*}
$$

The q-digamma function is defined by $\Phi_{q}(z)=\partial_{z} \log \Gamma_{q}(z)$. In the $q \rightarrow 1$ limit, they tends to the usual Γ function and the digamma function respectively.

Ramanujan's summation formula (cf [4] p502, [11] p138) is a two-sided generalization of the above q-binomial theorem (E.28). For $|q|<1,|b / a|<|z|<1$,

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \frac{(a ; q)_{n}}{(b ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}\left(\frac{q}{a z} ; q\right)_{\infty}(q ; q)_{\infty}\left(\frac{b}{a} ; q\right)_{\infty}}{(z ; q)_{\infty}\left(\frac{q}{a} ; q\right)_{\infty}(b ; q)_{\infty}\left(\frac{b}{a z} ; q\right)_{\infty}} \tag{E.33}
\end{equation*}
$$

F Pauli matrices, Tensor product

Pauli matrices are

$$
\sigma^{x}=\left[\begin{array}{ll}
0 & 1 \tag{F.34}\\
1 & 0
\end{array}\right], \sigma^{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \sigma^{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Tensor product notation. Suppose there are m dimensional vector spaces $V_{i}, 1 \leq i \leq N$. For an $m \times m$ matrix A, A_{i} acts nontrivially only on V_{i}. Similarly, for $m^{2} \times m^{2}$ matrix B, $B_{i, j}$ acts nontrivially only on V_{i}, V_{j}.

For example, when there are three two-dimensional vector spaces $V_{1}=V_{2}=V_{3}=\mathbb{C}^{2}$ and 4×4 matrix $A, \sigma_{1}^{x}=\sigma^{x} \otimes 1_{2} \otimes 1_{2}, \sigma_{2}^{z}=1_{2} \otimes \sigma^{z} \otimes 1_{2}, A_{12}=A \otimes 1_{2}$, where 1_{2} means the 2×2 identity matrix.

References

[1] A. Rákos and G. M. Schütz, Current distribution and random matrix ensembles for an integrable asyymetric fragmentation process, J. Stat. Phys. 118 (2005), 511-530.
[2] G. Amir, I. Corwin, and J. Quastel, Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions, Comm. Pure Appl. Math. 64 (2011), 466-537.
[3] G.W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices, Cambridge University Press, 2009.
[4] G. E. Andrews, R. Askey, and R. Roy, Special Functions. Volume 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1999.
[5] R. J. Baxter, Exactly solved models in statistical mechanics, Academic, 1982.
[6] L. Bertini and G. Giacomin, Stochastic Burgers and KPZ Equations from Particle Systems, Comm. Math. Phys 183 (1997), 571-607.
[7] H. Bethe, Zur theorie der metalle. i. eigenwerte und eigenfunktionen der linearen atomkette, Z. Physik 71 (1931), 205-226.
[8] A. Borodin and I. Corwin, Macdonald processes, Prob. Th. Rel. Fields 158 (2014), 225400.
[9] I. Corwin and L. Petrov, Stochastic higher spin vertex models on the line arXiv:1502.07374.
[10] P. J. Forrester, Log gases and random matrices, Princeton University Press, 2010.
[11] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge, 2004.
[12] K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), 437-476.
[13] M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889-892.
[14] T. M. Liggett, Interacting particle systems, Springer-Verlag, 1985.
[15] , Stochastic interacting systems: Contact, voter, and exclusion processes, Springer-Verlag, 1999.
[16] _ Continuous time markov processes: An introduction (graduate studies in mathematics, Amer Mathematical Society, 2010.
[17] M. L. Mehta, Random matrices, 3rd ed., Elsevier, 2004.
[18] T. Nagao and T. Sasamoto, Asymmetric simple exclusion process and modified random matrix ensembles, Nucl. Phys. B 699 (2004), 487-502.
[19] A. M. Povolotsky, On integrability of zero-range chipping models with factorized steady state, J. Phys. A 46 (2013), 465205.
[20] T. Sasamoto, Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques, J. Stat. Mech. (2007), P07007.
[21] T. Sasamoto and H. Spohn, Exact height distributions for the KPZ equation with narrow wedge initial condition, Nucl. Phys. B 834 (2010), 523-542.
[22] , One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality, Phys. Rev. Lett. 104 (2010), 230602.
[23] , The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class, J. Stat. Mech. (2010), P11013.
[24] , The crossover regime for the weakly asymmetric simple exclusion process, J. Stat. Phys. 140 (2010), 209-231.
[25] T. Sasamoto and M. Wadati, Exact results for one-dimensional totally asymmetric diffusion models, J. Phys. A 31 (1998), 6057-6071.
[26] G. M. Schütz, Exact solution of the master equation for the asymmetric exclusion process, J. Stat. Phys. 88 (1997), 427-445.
[27] H. Spohn, Large scale dynamics of interacting particles, Springer, 1991.
[28] G. Szegö, Orthogonal polynomials, AMS, 1975.
[29] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174.
[30] _ A Fredholm determinant representation in ASEP, J. Stat. Phys. 132 (2008), 291-300.
[31] , Integral Formulas for the Asymmetric Simple Exclusion Process, Com. Math. Phys. 279 (2008), 815-844.
[32] , Asymptotics in ASEP with step initial condition, Commun. Math. Phys. 209 (2009), 129-154.
[33] V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, 1997.

