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Introduction

Central Problem: Rank of Symbolic Matrices

Suppose you have,

qi1 qi2 --- Qip
0= q'21 q.22 . q.2n
gnt 9n2 ... Gnn
where gj; are degree-d polynomials € F[xy, ..., xn]. Compute the rank

of @ (over F(xi, ..., Xm))
For this talk, d is a constant..
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Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors
(over F(x1,...,%m))-

2. The maximum number r such that at least one of the r x r minor is
a non-zero polynomial.

3. Over large enough fields: same as the maximum possible rank of the
evaluated Q (i.e evaluating the entries by fixing the variables
X1,...,Xm to some constants from F) over F.

4. Matrix Factorization: the smallest integer r such that Q can be
factored as @ = L x M, where @ is an n x r matrix and M is a
r x n matrix. (entries of L and M come from F(xq,...,xn)).
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Subsumes many computational problems arising in algebra, geometry and
combinatorics.

e Linear Case:
1. Size of maximum matching in a graph (using the Tutte Matrix).
2. More generally, PIT for Determinants (and ABPs).
e Non-Linear Case
1. Algebraic rank (transcendence degree) of polynomials over zero
characteristic (using the Jacobian Matrix)

2. Dimension of the dual varieties of hypersurfaces (using the Hessian
Matrix)
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This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [q;] and a constant 0 < € < 1, there exists a deterministic
algorithm which computes an assignment (A1, A2, ..., A\m) € F™ such
that,

rk(Q(A1, A2, ..., Am)) > (1 — €)rk(Q(xa, - -+ y Xm))-

- - o(4)
Time Complexity- poly | (nmd)~\

Clearly, the above running time is polynomial when d and ¢ are constants.

Can also be seen as an attempt to bridge the knowledge gap between the
commutative and the non-commutative world.



Algebraic rank approximation

Corollary (PTAS for AlgRank)
Given a set f:={f,...,f,} CF[xy,...,xm] of polynomials of degrees
bounded by a constant d with char(F) =0, and a constant 0 < e < 1,
there is a deterministic algorithm that outputs a number r, such that

r > (1 —¢)- algRank(f).
. . o(£)
Time Complexity- poly | (nmd)~\ <
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The Algorithm

High-level Approach— Greedily increase the rank!

If we cannot, we are already good.

We begin with all variables being set to 0

Suppose we have an assignment (A1, A2, ..., A\p) s.t.
rk(Q(A1, A2, .oy Am)) = r. i (A1, Az, oy Ap) “hits” an rxr
minor of Q(x1,...,Xm)-

We try to increase the rank by updating the assignment. By finding
an assignment which “hits” an (r + 1) x (r + 1) minor.

We update it to (A1 + y1, X0 + Y2, -y Am + Vim)

repeat as long as you can increase the rank by doing this.

If we cannot, conclude that the current assignment already gives a
good enough approximation.

11



The Algorithm

INPUT: A matrix Q, with entries from F[xy, ..., x|, with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)
OUTPUT: \q,..., A\, € F such that
rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)

2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)

3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(A1, ..., Am)) > (2s + 2)

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)
2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)
3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors.

2512))

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)
2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)
3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)

2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)

3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(A1, ..., Am)) = (25 +2) Using brute force over all ((,},))
minors. In the example, an assignment hitting a 6 X 6 minor

4. While the rank is increasing,

12



The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < € < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1.
. Construct the (hitting) set Hm n4.s of size O((m(nd + 1))*)

Set s = [¢ — 1] (in the example, s = 2)

Find an assignment (A1, A2, ..., Ay) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

While the rank is increasing, Check if there exists some

(Y1, -+ Ym) € Hm,nd,s, such that

rank(Q(A1 + Y1, A2 + Y2, - -« oy Am 4 Ym)) > rank(Q(A1, ..., Am)),
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The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < € < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1.
. Construct the (hitting) set Hm n4.s of size O((m(nd + 1))*)

Set s = [¢ — 1] (in the example, s = 2)

Find an assignment (A1, A2, ..., Ay) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

While the rank is increasing, Check if there exists some

(Y1, -+ Ym) € Hm,nd,s, such that

rank(Q(A1 + Y1, A2 + Y2, - -« oy Am 4 Ym)) > rank(Q(A1, ..., Am)),
if rank(Q(A\1 +y1, A2+ ¥2, .-, Am + ¥m)) > rank(Q(A1, ..., Am)),
update (A1, ..., Am) to (A1 +y1, 2+ Y2, Am + Ym)

Finally return (A1,..., Am). .
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Understanding the working of the Algorithm

We have found (A1, ..., A\p) such that rank(Q(A1, ..., Am)) =r
We want to find an assignment of the form

(M1 + Y1, A2 + Y2, -+ s Am + Ym) such that

rk(QA1+ y1, Ao+ Yo, oo s Am F Ym)) > r

After some preprocessing we can interpret this as,

I, 0
AL, A2,y Am) = . 1
Q( 1, A2, ) ) [ 0 O] ( )
nxXn
And,

L+L B

Q(Al +}/17>\2 +}/2,-~-«>)\m+Ym) = A C ] . (2)
nxn

Here, L, A, B, C are matrices with entries being degree at-most d. None
of them are homogeneous, but don't have constant terms.
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Rank increasing step

We want to “hit” an (r + 1) x (r + 1) minor of

Q()\l +yvi, o+ Yo, Am+ ym).

Consider the minor formed by taking /, + L, the k*® row of A, the /t}
column of B, and also the (k,£)"entry of C.

Denote this by M ;. Clearly, My , looks like below:

1+ h1 ho ... I, by
b1 14+hy ... b, b
My = : : : : o (3)
I lyo oo 1+1, b,
a ap . a
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Rank increasing step

We want to “hit" the following minor

O T
bi  l4hby . by b
Mye = : : . : N (4)
I e ... 1+1, b,
ar a» . ar c

Perhaps seems as hard as the original problem

We try to "hit" the low degree components of Determinant of M ,.
Concretely, homs(Det(Mx.r)), (recall s ~ <).
Hitting homs(Det(My ¢)) is easy for small s.
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Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5
Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero

monomial xj, - Xx;, - - - x;, in f.

s
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Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5

Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero
monomial x;, - X, - - - x;, in f.

Brute force search for these s variables (not necessarily distinct) by
setting all the other m — s variables to zero.

Uses (7) = O(m*) assignments.

We now have a f’ which is a polynomial in s variables of degree at most
d.

Can be hit using (d + 1)° assignments (Schwarz Zippel Lemma)

Thus, a hitting set of size O(m* - (d + 1)°) = O((m(d + 1))°)
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The essence of the algorithm

The overall scenario can be reformulated as below. One of the following
always happens:
1. For an appropriately chosen s (depending upon d and e),

3k, ¢ € [n — r] such that det(Mx ¢) has a non-zero monomial of
degree at most s. In this case, we can increase the rank (and repeat)

2. Vk,l € [n—r], det(Mk ) has no non-zero monomials of degree at
most s. In this case, we show that r > (1 —¢€) - rk(Q(x1 ... Xxm)).

17



Heavy lifting

Vk, ¢ € [n— r], det(My ) has no non-zero monomials of degree at most
s.

Want to show, Condition 1 = r > (1 —¢€) - rk(Q(x1 ...xm)).



Taste of analysis: a special case

We look at the case d = 2,¢ =2/3
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Taste of analysis: a special case

We look at the case d = 2,¢ =2/3
We can decompose Q(A1 + y1, 0 + Yo ..., Am + ¥m) as

I+ Qu+Lin Qo+l

QO+ 1, A0 + Yoo+ oo A+ ym) =
Aatnde+ye ym) @1 + Lo Qa2 + Lo

Minor of interest My, =

L+aqu(y) +4uly) - ai(y) +4(y)  tay) + bu(y)
g21(y) + C21(y) 200 q2r(y) + L2/ (y) to(y) + ba(y)
@)+ oY) oo 14 an¥)+Eely) )+ biy)

si(y) + a1(y) e se(y) + ar(y) q(y) +€(y)

where g;i(y), si(y). tj(y), g(y) are quadratic forms, while
Lii(y), ai(y), bj(y), £(y) are linear forms
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Suppose £(y) # 0, observe the following equality:
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det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
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In particular, the matrix Ly, = 0.

In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
If g(y) — > ai(y) - bi(y) # 0, we can increase the rank.
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In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
If g(y) — > ai(y) - bi(y) # 0, we can increase the rank.

So, we can assume g(y) = >_; ai(y) - bi(y)
ThUS, Q22 = L21L12.
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1/3-rd approximation
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1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

0 258 1 T e s 1 ) =
(aty1, 22+, ym) @1+ Lo LoiLyo

nxn
Note that

rank (Q(A1 + y1, 2+ Y2, -+, Am + Ym) = rank(Q(x1, X2, . . -, Xm))

Now rank(L21L12) <r

We get that the rank(Q(A1 + y1, A2 + yo, .., Am + Ym)) < 3r

So rank(Q(A1, A2, ..., Am)) is already a 1/3-approximation of
rank(Q(x1, X2, - .., Xm)).
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Det(M) = det(C — AL~ B)det(L)

M:

This directly gives,
det(My ) = —a-(adj(l, + L)) - b+ c - (det(/, + L)).

After staring for sometime,

W = —A-(adj(l, + L)) - B+ C - (det(/, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)™-entry for all 1 < u,v < n—r.
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W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

Recall that we wanted to analyze Vk, ¢ € [n — r], homs(det(My ¢)) = 0.

That is, homsW = 0!

We finally get

r—i—1

W= —-A Z_:(—l)’p;- Z (=LY | | B+(po—pr+---+(-1)"p,)-C.
i=0 j=0

We have to study the homg(W).
This work does that!
Finally

Lemma
If hom;(W) = 0,Vi € [s], rank(Q(x1,x2, ..., xm)) < r(l + :=577)
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Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

e A limitation to this approach: we need PIT for the entries, at least.

e Other models where we know PIT for the entries, eg: Sparse,
ROABP? - OPEN?

e Approximating algebraic rank over fields of small characteristic?

e No Jacobian criterion! Constant inseparable degree (PSS'16)?
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Thanks a lot for attending :)



