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Introduction

Central Problem: Rank of Symbolic Matrices

Suppose you have,

Q =


q11 q12 . . . q1n

q21 q22 . . . q2n

...
...

. . .
...

qn1 qn2 . . . qnn

 .

where qij are degree-d polynomials ∈ F[x1, . . . , xm]. Compute the rank

of Q (over F(x1, . . . , xm))

For this talk, d is a constant..
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Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors

(over F(x1, . . . , xm)).

2. The maximum number r such that at least one of the r × r minor is

a non-zero polynomial.

3. Over large enough fields: same as the maximum possible rank of the

evaluated Q (i.e evaluating the entries by fixing the variables

x1, . . . , xm to some constants from F) over F.

4. Matrix Factorization: the smallest integer r such that Q can be

factored as Q = L×M, where Q is an n × r matrix and M is a

r × n matrix. (entries of L and M come from F(x1, . . . , xm)).
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Motivation:

Subsumes many computational problems arising in algebra, geometry and

combinatorics.

• Linear Case:

1. Size of maximum matching in a graph (using the Tutte Matrix).

2. More generally, PIT for Determinants (and ABPs).

• Non-Linear Case

1. Algebraic rank (transcendence degree) of polynomials over zero

characteristic (using the Jacobian Matrix)

2. Dimension of the dual varieties of hypersurfaces (using the Hessian

Matrix)
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Homogenization

Can restrict ourselves to the case when the entries are all homogeneous

degree-d polynomials.

f ∈ F[x1, . . . , xm] of degree at most d , the homogenization f H of f ,

f H :=
∑d

i=0 hom fi · yd−i ., (i.e. f H ∈ F[x1, . . . , xm, y ])

The homogenization QH(x1, . . . , xm, y) of Q(x1, . . . , xm) is defined as

(QH)ij := (Qij)
H .

Lemma

If Q(x1, . . . , xm) is a matrix with its entries being polynomials of degree

at most d in the variables x1, . . . , xm and |F| > dn + 1 then

rank(Q) = rank(QH)
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Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm

(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when qij -s are

linear forms.

4. When qij ∈ F〈x1, x2, . . . xm〉 are given as

polynomial sized Non-commutative formula then (non-commutative)

Rank is in P. (GGOW’16; IQS’17)

5. When qij are linear forms then

commutative rank ≤ non-commutative rank ≤ 2· commutative-rank.

Thus GGOW’16, IQS’17 give deterministic polynomial time

algorithms for computing factor 2 approximation of the commutative

rank.

6. BJP’17 improved this to give a (1− ε) approximation algorithm for

commutative rank in deterministic polynomial time.

7



Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm

(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when qij -s are

linear forms.

4. When qij ∈ F〈x1, x2, . . . xm〉 are given as

polynomial sized Non-commutative formula then (non-commutative)

Rank is in P. (GGOW’16; IQS’17)

5. When qij are linear forms then

commutative rank ≤ non-commutative rank ≤ 2· commutative-rank.

Thus GGOW’16, IQS’17 give deterministic polynomial time

algorithms for computing factor 2 approximation of the commutative

rank.

6. BJP’17 improved this to give a (1− ε) approximation algorithm for

commutative rank in deterministic polynomial time.

7



Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm

(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when qij -s are

linear forms.

4. When qij ∈ F〈x1, x2, . . . xm〉 are given as

polynomial sized Non-commutative formula then (non-commutative)

Rank is in P. (GGOW’16; IQS’17)

5. When qij are linear forms then

commutative rank ≤ non-commutative rank ≤ 2· commutative-rank.

Thus GGOW’16, IQS’17 give deterministic polynomial time

algorithms for computing factor 2 approximation of the commutative

rank.

6. BJP’17 improved this to give a (1− ε) approximation algorithm for

commutative rank in deterministic polynomial time.

7



Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm

(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when qij -s are

linear forms.

4. When qij ∈ F〈x1, x2, . . . xm〉 are given as

polynomial sized Non-commutative formula then (non-commutative)

Rank is in P. (GGOW’16; IQS’17)

5. When qij are linear forms then

commutative rank ≤ non-commutative rank ≤ 2· commutative-rank.

Thus GGOW’16, IQS’17 give deterministic polynomial time

algorithms for computing factor 2 approximation of the commutative

rank.

6. BJP’17 improved this to give a (1− ε) approximation algorithm for

commutative rank in deterministic polynomial time.

7



Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm

(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when qij -s are

linear forms.

4. When qij ∈ F〈x1, x2, . . . xm〉 are given as

polynomial sized Non-commutative formula then (non-commutative)

Rank is in P. (GGOW’16; IQS’17)

5. When qij are linear forms then

commutative rank ≤ non-commutative rank ≤ 2· commutative-rank.

Thus GGOW’16, IQS’17 give deterministic polynomial time

algorithms for computing factor 2 approximation of the commutative

rank.

6. BJP’17 improved this to give a (1− ε) approximation algorithm for

commutative rank in deterministic polynomial time.

7



Q. What if the entries are higher degree forms?

The connection between non-commutative-rank and commutative rank is

not known!
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This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the

case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [qij ] and a constant 0 < ε < 1, there exists a deterministic

algorithm which computes an assignment (λ1, λ2, . . . , λm) ∈ Fm such

that,

rk(Q(λ1, λ2, . . . , λm)) ≥ (1− ε)rk(Q(x1, . . . , xm)).

Time Complexity - poly

(
(nmd)

O
(

d2

ε

))
Clearly, the above running time is polynomial when d and ε are constants.

Can also be seen as an attempt to bridge the knowledge gap between the

commutative and the non-commutative world.
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Algebraic rank approximation

Corollary (PTAS for AlgRank)

Given a set f := {f1, . . . , fn} ⊂ F[x1, . . . , xm] of polynomials of degrees

bounded by a constant d with char(F) = 0, and a constant 0 < ε < 1,

there is a deterministic algorithm that outputs a number r , such that

r ≥ (1− ε) · algRank(f).

Time Complexity- poly

(
(nmd)

O
(

d2

ε

))
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The Algorithm

High-level Approach– Greedily increase the rank!

If we cannot, we are already good.

• We begin with all variables being set to 0

• Suppose we have an assignment (λ1, λ2, . . . , λm) s.t.

rk(Q(λ1, λ2, . . . , λm)) = r . i.e. (λ1, λ2, . . . , λm) “hits” an r × r

minor of Q(x1, . . . , xm).

• We try to increase the rank by updating the assignment. By finding

an assignment which “hits” an (r + 1)× (r + 1) minor.

We update it to (λ1 + y1, λ2 + y2, . . . , λm + ym)

• repeat as long as you can increase the rank by doing this.

• If we cannot, conclude that the current assignment already gives a

good enough approximation.
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The Algorithm

INPUT: A matrix Q, with entries from F[x1, . . . , xm], with degrees

bounded by d , and the approximation parameter 0 < ε < 1 (think

d = 2, ε = 2/3)

OUTPUT: λ1, . . . , λm ∈ F such that

rank(Q(λ1, . . . , λm)) ≥ (1− ε)rank(Q(x1, . . . , xm))

1. Set s =
⌈
d
ε − 1

⌉
(in the example, s = 2)

2. Construct the (hitting) set Hm,nd,s of size O((m(nd + 1))s)

3. Find an assignment (λ1, λ2, . . . , λm) such that

rank(Q(λ1, . . . , λm)) ≥ (2s + 2) Using brute force over all
(

n
(2s+2)

)
minors. In the example, an assignment hitting a 6× 6 minor

4. While the rank is increasing, Check if there exists some

(y1, . . . , ym) ∈ Hm,nd,s , such that

rank(Q(λ1 + y1, λ2 + y2, . . . ., λm + ym)) > rank(Q(λ1, . . . , λm)),

5. if rank(Q(λ1 + y1, λ2 + y2, . . . ., λm + ym)) > rank(Q(λ1, . . . , λm)),

update (λ1, . . . , λm) to (λ1 + y1, λ2 + y2, . . . ., λm + ym)

6. Finally return (λ1, . . . , λm).
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Understanding the working of the Algorithm

We have found (λ1, . . . , λm) such that rank(Q(λ1, . . . , λm)) = r

We want to find an assignment of the form

(λ1 + y1, λ2 + y2, . . . ., λm + ym) such that

rk(Q(λ1 + y1, λ2 + y2, . . . ., λm + ym)) > r

After some preprocessing we can interpret this as,

Q(λ1, λ2, . . . , λm) =

[
Ir 0

0 0

]
n×n

. (1)

And,

Q(λ1 + y1, λ2 + y2, . . . ., λm + ym) =

[
Ir + L B

A C

]
n×n

. (2)

Here, L,A,B,C are matrices with entries being degree at-most d. None

of them are homogeneous, but don’t have constant terms.
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Rank increasing step

We want to “hit” an (r + 1)× (r + 1) minor of

Q(λ1 + y1, λ2 + y2, . . . ., λm + ym).

Consider the minor formed by taking Ir + L, the kth row of A, the `th

column of B, and also the (k, `)thentry of C .

Denote this by Mk,`. Clearly, Mk,` looks like below:

Mk,` =


1 + l11 l12 . . . l1r b1

l21 1 + l22 . . . l2r b2

...
...

. . .
...

...

lr1 lr2 . . . 1 + lrr br

a1 a2 . . . ar c

 . (3)
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Rank increasing step

We want to “hit” the following minor

Mk,` =


1 + l11 l12 . . . l1r b1

l21 1 + l22 . . . l2r b2

...
...

. . .
...

...

lr1 lr2 . . . 1 + lrr br

a1 a2 . . . ar c

 . (4)

Perhaps seems as hard as the original problem

We try to “hit” the low degree components of Determinant of Mk,`.

Concretely, homs(Det(Mk,`)), (recall s ∼ d
ε ).

Hitting homs(Det(Mk,`)) is easy for small s.
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Hitting the low degree components

Let Fm,d,s := {f ∈ F[x1, . . . , xm] | deg(f ) ≤ d ,ord(f ) ≤ s}, then there is

a Hitting set Hm,d,s of size O(m(d + 1)s) against Fm,d,s

Proof sketch: Let f ∈ Fm,d,s . Since ord(f ) ≤ s, there is a non-zero

monomial xi1 · xi2 · · · xis in f .

Brute force search for these s variables (not necessarily distinct) by

setting all the other m − s variables to zero.

Uses
(
m
s

)
= O(ms) assignments.

We now have a f ′ which is a polynomial in s variables of degree at most

d .

Can be hit using (d + 1)s assignments (Schwarz Zippel Lemma)

Thus, a hitting set of size O(ms · (d + 1)s) = O((m(d + 1))s)
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The essence of the algorithm

The overall scenario can be reformulated as below. One of the following

always happens:

1. For an appropriately chosen s (depending upon d and ε),

∃k, ` ∈ [n − r ] such that det(Mk,`) has a non-zero monomial of

degree at most s. In this case, we can increase the rank (and repeat)

2. ∀k, ` ∈ [n − r ], det(Mk,`) has no non-zero monomials of degree at

most s. In this case, we show that r ≥ (1− ε) · rk(Q(x1 . . . xm)).

17



Heavy lifting

Condition 1

∀k, ` ∈ [n − r ], det(Mk,`) has no non-zero monomials of degree at most

s.

Want to show, Condition 1 =⇒ r ≥ (1− ε) · rk(Q(x1 . . . xm)).

18



Taste of analysis: a special case

We look at the case d = 2, ε = 2/3

We can decompose Q(λ1 + y1, λ2 + y2 . . . , λm + ym) as

Q(λ1 + y1, λ2 + y2, . . . ., λm + ym) =

[
Ir + Q11 + L11 Q12 + L12

Q21 + L21 Q22 + L22

]
n×n

.

Minor of interest Mk` =
1 + q11(y) + `11(y) . . . q1r (y) + `1r (y) t1(y) + b1(y)

q21(y) + `21(y) . . . q2r (y) + `2r (y) t2(y) + b2(y)
...

. . .
...

...

qr1(y) + `12(y) . . . 1 + qrr (y) + `rr (y) tr (y) + br (y)

s1(y) + a1(y) . . . sr (y) + ar (y) q(y) + `(y)

 .

where qij(y), si (y), tj(y), q(y) are quadratic forms, while

`ij(y), ai (y), bj(y), `(y) are linear forms

19
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Taste of analysis: a special case

Suppose `(y) 6= 0, observe the following equality:

Det(Mk,`) = `(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (y1, . . . , ym) ’s such that

det(Mk,`(λ1 + y1, λ2 + y2, . . . ., λm + ym) 6= 0 and this assignment

increases the rank of Q.

Hence, we can assume `(y) = 0.

In particular, the matrix L22 = 0.

In this case, observe the following equality.

det(Mk,`) = q(y)−
∑r

i ai (y) · bi (y)+ monomials of degree at least 3.

If q(y)−
∑r

i ai (y) · bi (y) 6= 0, we can increase the rank.

So, we can assume q(y) =
∑r

i ai (y) · bi (y)

Thus, Q22 = L21L12.
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Hence, we can assume `(y) = 0.

In particular, the matrix L22 = 0.

In this case, observe the following equality.

det(Mk,`) = q(y)−
∑r

i ai (y) · bi (y)+ monomials of degree at least 3.

If q(y)−
∑r

i ai (y) · bi (y) 6= 0, we can increase the rank.

So, we can assume q(y) =
∑r

i ai (y) · bi (y)

Thus, Q22 = L21L12.
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1/3-rd approximation

Hence,

Q(λ1 + y1, λ2 + y2, . . . ., λm + ym) =

[
Ir + Q11 + L11 Q12 + L12

Q21 + L21 L21L12

]
n×n

.

Note that

rank (Q(λ1 + y1, λ2 + y2, . . . ., λm + ym) = rank(Q(x1, x2, . . . , xm))

Now rank(L21L12) ≤ r

We get that the rank(Q(λ1 + y1, λ2 + y2, . . . ., λm + ym)) ≤ 3r

So rank(Q(λ1, λ2, . . . , λm)) is already a 1/3-approximation of

rank(Q(x1, x2, . . . , xm)).
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General Case

M =

[
L̃ B

A C

]
n×n

.

Det(M) = det(C − AL̃−1B)det(L̃)

This directly gives,

det(Mk,`) = −a· (adj(Ir + L)) · b + c · (det(Ir + L)).

After staring for sometime,

W = −A· (adj(Ir + L)) · B + C · (det(Ir + L)).

Here W is the (n− r)× (n− r) matrix polynomial having the polynomial

det(Mu,v ) as its (u, v)th-entry for all 1 ≤ u, v ≤ n − r .
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W = −A· (adj(Ir + L)) · B + C · (det(Ir + L)).

Here W is the (n− r)× (n− r) matrix polynomial having the polynomial

det(Mu,v ) as its (u, v)th-entry for all 1 ≤ u, v ≤ n − r .

Recall that we wanted to analyze ∀k, ` ∈ [n − r ], homs(det(Mk,`)) = 0.

That is, homsW = 0!

We finally get

W = −A·

r−1∑
i=0

(−1)ipi ·

r−i−1∑
j=0

(−L)j

·B +(p0−p1+· · ·+(−1)rpr )·C .

We have to study the homs(W ).

This work does that!

Finally

Lemma

If homi (W ) = 0,∀i ∈ [s], rank(Q(x1, x2, . . . , xm)) ≤ r(1 + s
s−d+1 )
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Conclusion and Open Problems

• Having Vishwas in BJP helps: yields stronger results. Enables us to

solve non-linear problems too.

• We give a deterministic PTAS for the Commutative rank problem

when the entries are polynomials with degrees bounded by a

constant d .

• Generalizing it to stronger models? - Eg: when entries are given as

sparse polynomials, ROABP, formulas or circuits.

• A limitation to this approach: we need PIT for the entries, at least.

• Other models where we know PIT for the entries, eg: Sparse,

ROABP? - OPEN?

• Approximating algebraic rank over fields of small characteristic?

• No Jacobian criterion! Constant inseparable degree (PSS’16)?
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Thanks a lot for attending :)
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