Approximating the (Commutative) Rank of
Symbolic Matrices

joint work with Vishwas Bhargava, Markus Blaser and
Gorav Jindal

March 27, 2019

WACT 2019
ICTS, Bangalore

Stides. skedetsn ¢ Vishwas.

Introduction

Central Problem: Rank of Symbolic Matrices

Suppose you have,

qi1 qi2 --- Qip
0= q'21 q.22 . q.2n
gnt 9n2 ... Gnn
where gj; are degree-d polynomials € F[xy, ..., xn]. Compute the rank

of @ (over F(xi, ..., Xm))
For this talk, d is a constant..

Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors
(over F(x1,...,%m))-

Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors
(over F(x1,...,%m))-
2. The maximum number r such that at least one of the r x r minor is

a non-zero polynomial.

Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors
(over F(x1,...,%m))-

2. The maximum number r such that at least one of the r x r minor is
a non-zero polynomial.

3. Over large enough fields: same as the maximum possible rank of the
evaluated Q (i.e evaluating the entries by fixing the variables
X1,...,Xm to some constants from F) over F.

Many equivalent definitions

1. Cardinality of a maximal linearly independent subset of row vectors
(over F(x1,...,%m))-

2. The maximum number r such that at least one of the r x r minor is
a non-zero polynomial.

3. Over large enough fields: same as the maximum possible rank of the
evaluated Q (i.e evaluating the entries by fixing the variables
X1,...,Xm to some constants from F) over F.

4. Matrix Factorization: the smallest integer r such that Q can be
factored as @ = L x M, where @ is an n x r matrix and M is a
r x n matrix. (entries of L and M come from F(xq,...,xn)).

Subsumes many computational problems arising in algebra, geometry and
combinatorics.

Subsumes many computational problems arising in algebra, geometry and
combinatorics.

e Linear Case:

1. Size of maximum matching in a graph (using the Tutte Matrix).
2. More generally, PIT for Determinants (and ABPs).

Subsumes many computational problems arising in algebra, geometry and
combinatorics.

e Linear Case:
1. Size of maximum matching in a graph (using the Tutte Matrix).
2. More generally, PIT for Determinants (and ABPs).
e Non-Linear Case
1. Algebraic rank (transcendence degree) of polynomials over zero
characteristic (using the Jacobian Matrix)

2. Dimension of the dual varieties of hypersurfaces (using the Hessian
Matrix)

Homogenization

Can restrict ourselves to the case when the entries are all homogeneous
degree-d polynomials.

Homogenization

Can restrict ourselves to the case when the entries are all homogeneous
degree-d polynomials.

f € F[xq, ..., xm] of degree at most d, the homogenization f of f,
fH =9 Jhomfi-y9=i., (ie. fH € Flxi,...,%m y])

The homogenization Q" (x1,...,Xm,y) of Q(xi,...,xm) is defined as

(Q")y == (Qy)~.

Homogenization

Can restrict ourselves to the case when the entries are all homogeneous
degree-d polynomials.

f € F[xq, ..., xm] of degree at most d, the homogenization f of f,
fH =9 Jhomfi-y9=i., (ie. fH € Flxi,...,%m y])

The homogenization Q" (x1,...,Xm,y) of Q(xi,...,xm) is defined as
(@) = (Qyp)".

Lemma
If Q(x1,...,Xxm) is @ matrix with its entries being polynomials of degree
at most d in the variables x, ..., X, and |F| > dn+ 1 then

rank(Q) = rank(Q")

Homogenization

Can restrict ourselves to the case when the entries are all homogeneous
degree-d polynomials.

f € F[xq, ..., xm] of degree at most d, the homogenization f of f,
fH =9 Jhomfi-y9=i., (ie. fH € Flxi,...,%m y])

The homogenization Q" (x1,...,Xm,y) of Q(xi,...,xm) is defined as
(@) = (Qyp)".

Lemma
If Q(x1,...,Xxm) is @ matrix with its entries being polynomials of degree
at most d in the variables x, ..., X, and |F| > dn+ 1 then

rank(Q) = rank(Q")

Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm
(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when gj;-s are
linear forms.

Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm
(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when gj;-s are
linear forms.

4. When gjj € F(x1, %2, ... Xm) are given as

polynomial sized Non-commutative formula then (non-commutative)
Rank is in P. (GGOW'16; 1QS'17)

Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm
(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when gj;-s are
linear forms.

4. When gjj € F(x1, %2, ... Xm) are given as
polynomial sized Non-commutative formula then (non-commutative)
Rank is in P. (GGOW'16; 1QS'17)

5. When gj; are linear forms then
commutative rank < non-commutative rank < 2- commutative-rank.
Thus GGOW'16, IQS’'17 give deterministic polynomial time
algorithms for computing factor 2 approximation of the commutative

rank.

Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm
(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when gj;-s are
linear forms.

4. When gjj € F(x1, %2, ... Xm) are given as
polynomial sized Non-commutative formula then (non-commutative)
Rank is in P. (GGOW'16; 1QS'17)

5. When gj; are linear forms then

commutative rank < non-commutative rank < 2- commutative-rank.
Thus GGOW'16, IQS’'17 give deterministic polynomial time
algorithms for computing factor 2 approximation of the commutative
rank.

6. BJP'17 improved this to give a (1 — €) approximation algorithm for
commutative rank in deterministic polynomial time.

Complexity status

1. Field of constant size: NP complete

2. Large enough fields: simple randomized polynomial time algorithm
(Schwarz-Zippel)

3. Finding Rank here is as hard as PIT for ABPs, even when gj;-s are
linear forms.

4. When gjj € F(x1, %2, ... Xm) are given as
polynomial sized Non-commutative formula then (non-commutative)
Rank is in P. (GGOW'16; 1QS'17)

5. When gj; are linear forms then

commutative rank < non-commutative rank < 2- commutative-rank.
Thus GGOW'16, IQS’'17 give deterministic polynomial time
algorithms for computing factor 2 approximation of the commutative
rank.

6. BJP'17 improved this to give a (1 — €) approximation algorithm for
commutative rank in deterministic polynomial time.

Q. What if the entries are higher degree forms?

Q. What if the entries are higher degree forms?
The connection between non-commutative-rank and commutative rank is
not known!

This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [q;] and a constant 0 < € < 1, there exists a deterministic
algorithm which computes an assignment (A1, A2, ..., A\m) € F™ such
that,

rk(Q(A1, A2, ..., Am)) > (1 — €)rk(Q(xa, - -+ y Xm))-

This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [q;] and a constant 0 < € < 1, there exists a deterministic
algorithm which computes an assignment (A1, A2, ..., A\m) € F™ such
that,

rk(Q(A1, A2, ..., Am)) > (1 — €)rk(Q(xa, - -+ y Xm))-

)

ol%

Time Complexity- poly ((nmd)o(

This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [q;] and a constant 0 < € < 1, there exists a deterministic
algorithm which computes an assignment (A1, A2, ..., A\m) € F™ such
that,

rk(Q(A1, A2, ..., Am)) > (1 — €)rk(Q(xa, - -+ y Xm))-

- - o(4)
Time Complexity- poly | (nmd)~\

Clearly, the above running time is polynomial when d and ¢ are constants.

This work: makes a progress

Gives an algorithm for constant factor approximation of the rank in the
case of higher degree forms.

Theorem (PTAS for RANK)

Given Q = [q;] and a constant 0 < € < 1, there exists a deterministic
algorithm which computes an assignment (A1, A2, ..., A\m) € F™ such
that,

rk(Q(A1, A2, ..., Am)) > (1 — €)rk(Q(xa, - -+ y Xm))-

- - o(4)
Time Complexity- poly | (nmd)~\

Clearly, the above running time is polynomial when d and ¢ are constants.

Can also be seen as an attempt to bridge the knowledge gap between the
commutative and the non-commutative world.

Algebraic rank approximation

Corollary (PTAS for AlgRank)
Given a set f:={f,...,f,} CF[xy,...,xm] of polynomials of degrees
bounded by a constant d with char(F) =0, and a constant 0 < e < 1,
there is a deterministic algorithm that outputs a number r, such that

r > (1 —¢)- algRank(f).
. . o(£)
Time Complexity- poly | (nmd)~\ <

10

The Algorithm

High-level Approach— Greedily increase the rank!

11

The Algorithm

High-level Approach— Greedily increase the rank!
If we cannot, we are already good.

11

The Algorithm

High-level Approach— Greedily increase the rank!
If we cannot, we are already good.

e We begin with all variables being set to 0

e Suppose we have an assignment (A1, A2, ..., Am) s.t.
rk(QAL, A2y - s Am)) = . ie. (A1, Aay. .. Am) “hits” an rx r
minor of Q(x1,...,Xm)-

e We try to increase the rank by updating the assignment. By finding
an assignment which “hits” an (r + 1) x (r + 1) minor.

11

The Algorithm

High-level Approach— Greedily increase the rank!
If we cannot, we are already good.

e We begin with all variables being set to 0

e Suppose we have an assignment (A1, A2, ..., Am) s.t.
rk(QAL, A2y - s Am)) = . ie. (A1, Aay. .. Am) “hits” an rx r
minor of Q(x1,...,Xm)-

e We try to increase the rank by updating the assignment. By finding
an assignment which “hits” an (r + 1) x (r + 1) minor.
We update it to (A1 + y1, X0 + Y2, -y Am + Vim)

11

The Algorithm

High-level Approach— Greedily increase the rank!

If we cannot, we are already good.

We begin with all variables being set to 0

Suppose we have an assignment (A1, A2, ..., A\p) s.t.
rk(Q(A1, A2, .oy Am)) = r. i (A1, Az, oy Ap) “hits” an rxr
minor of Q(x1,...,Xm)-

We try to increase the rank by updating the assignment. By finding
an assignment which “hits” an (r + 1) x (r + 1) minor.

We update it to (A1 + y1, X0 + Y2, -y Am + Vim)

repeat as long as you can increase the rank by doing this.

If we cannot, conclude that the current assignment already gives a
good enough approximation.

11

The Algorithm

INPUT: A matrix Q, with entries from F[xy, ..., x|, with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)
OUTPUT: \q,..., A\, € F such that
rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)

2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)

3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(A1, ..., Am)) > (2s + 2)

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)
2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)
3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors.

2512))

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)
2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)
3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < e < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1. Set s = [2 — 1] (in the example, s = 2)

2. Construct the (hitting) set M na,s of size O((m(nd + 1))°)

3. Find an assignment (A1, A2, ..., A\p) such that
rank(Q(A1, ..., Am)) = (25 +2) Using brute force over all ((,},))
minors. In the example, an assignment hitting a 6 X 6 minor

4. While the rank is increasing,

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < € < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1.
. Construct the (hitting) set Hm n4.s of size O((m(nd + 1))*)

Set s = [¢ — 1] (in the example, s = 2)

Find an assignment (A1, A2, ..., Ay) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

While the rank is increasing, Check if there exists some

(Y1, -+ Ym) € Hm,nd,s, such that

rank(Q(A1 + Y1, A2 + Y2, - -« oy Am 4 Ym)) > rank(Q(A1, ..., Am)),
if rank(Q(A\1 +y1, A2+ ¥2, .-, Am + ¥m)) > rank(Q(A1, ..., Am)),

12

The Algorithm

INPUT: A matrix Q, with entries from F[xi, ..., Xn], with degrees
bounded by d, and the approximation parameter 0 < € < 1 (think
d=2e=2/3)

OUTPUT: \q,..., A\, € F such that

rank(Q(A1, ..., Am)) > (1 — ¢)rank(Q(x1, . .., Xm))

1.
. Construct the (hitting) set Hm n4.s of size O((m(nd + 1))*)

Set s = [¢ — 1] (in the example, s = 2)

Find an assignment (A1, A2, ..., Ay) such that
rank(Q(Ar, .., Am)) = (2 + 2) Using brute force over all ((
minors. In the example, an assignment hitting a 6 X 6 minor

2512))

While the rank is increasing, Check if there exists some

(Y1, -+ Ym) € Hm,nd,s, such that

rank(Q(A1 + Y1, A2 + Y2, - -« oy Am 4 Ym)) > rank(Q(A1, ..., Am)),
if rank(Q(A\1 +y1, A2+ ¥2, .-, Am + ¥m)) > rank(Q(A1, ..., Am)),
update (A1, ..., Am) to (A1 +y1, 2+ Y2, Am + Ym)

Finally return (A1,..., Am). .

Understanding the working of the Algorithm

We have found (A1, ..., A\p) such that rank(Q(A1, ..., Am)) =r

13

Understanding the working of the Algorithm

We have found (A1, ..., A\p) such that rank(Q(A1, ..., Am)) =r
We want to find an assignment of the form

(M1 + Y1, A2 + Y2, -+ s Am + Ym) such that

rk(Q()\l P Y1,)\2 ol V2,000)\m + ym)) >r
After some preprocessing we can interpret this as,
I, 0
AL, A2,y Am) = . 1
Q(1, N2, 9) [0 O] ()
nxXn

13

Understanding the working of the Algorithm

We have found (A1, ..., A\p) such that rank(Q(A1, ..., Am)) =r
We want to find an assignment of the form

(M1 + Y1, A2 + Y2, -+ s Am + Ym) such that

rk(QA1+ y1, Ao+ Yo, oo s Am F Ym)) > r

After some preprocessing we can interpret this as,

I, 0
AL, A2,y Am) = . 1
Q(1, A2,)) [0 O] ()
nxXn
And,

L+L B

Q(Al +}/17>\2 +}/2,-~-«>)\m+Ym) = A C] . (2)
nxn

Here, L, A, B, C are matrices with entries being degree at-most d. None
of them are homogeneous, but don't have constant terms.

13

Rank increasing step

We want to “hit” an (r + 1) x (r + 1) minor of
QM +y1, A2+ Yo, ooy Am + Yim)-

14

Rank increasing step

We want to “hit” an (r + 1) x (r + 1) minor of

QA +y1, Ao+ Y2,y Am =+ Yim)-

Consider the minor formed by taking /, + L, the k*® row of A, the /t}
column of B, and also the (k,£)"entry of C.

14

Rank increasing step

We want to “hit” an (r + 1) x (r + 1) minor of

Q()\l +yvi, o+ Yo, Am+ ym).

Consider the minor formed by taking /, + L, the k*® row of A, the /t}
column of B, and also the (k,£)"entry of C.

Denote this by M ;. Clearly, My , looks like below:

1+ h1 ho ... I, by
b1 14+hy ... b, b
My = : : : : o (3)
I lyo oo 1+1, b,
a ap . a

14

Rank increasing step

We want to “hit" the following minor

O T
bi l4hby . by b
Mye = : : . : N (4)
I e ... 1+1, b,
ar a» . ar

15

Rank increasing step

We want to “hit" the following minor

O T
bi l4hby . by b
Mye = : : . : N (4)
I e ... 1+1, b,
ar a» . ar

Perhaps seems as hard as the original problem

15

Rank increasing step

We want to “hit" the following minor

O T
bi l4hby . by b
Mye = : : . : N (4)
I e ... 1+1, b,
ar a» . ar c

Perhaps seems as hard as the original problem

We try to "hit" the low degree components of Determinant of M ,.
Concretely, homs(Det(Mx.r)), (recall s ~ <).
Hitting homs(Det(My ¢)) is easy for small s.

15

Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5
Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero

monomial xj, - Xx;, - - - x;, in f.

s

16

Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5

Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero
monomial x;, - X, - - - x;, in f.

Brute force search for these s variables (not necessarily distinct) by
setting all the other m — s variables to zero.

16

Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5

Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero
monomial x;, - X, - - - x;, in f.

Brute force search for these s variables (not necessarily distinct) by
setting all the other m — s variables to zero.

Uses (7) = O(m*) assignments.

16

Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5

Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero
monomial x;, - X, - - - x;, in f.

Brute force search for these s variables (not necessarily distinct) by
setting all the other m — s variables to zero.

Uses (7) = O(m*) assignments.

We now have a f’ which is a polynomial in s variables of degree at most
d.

Can be hit using (d + 1)° assignments (Schwarz Zippel Lemma)

16

Hitting the low degree components

Let Fmgs :={f € F[x1,...,xm] | deg(f) < d,ord(f) < s}, then there is
a Hitting set Hp, 4 of size O(m(d + 1)) against Fp, 4.5

Proof sketch: Let f € F,, 4. Since ord(f) < s, there is a non-zero
monomial x;, - X, - - - x;, in f.

Brute force search for these s variables (not necessarily distinct) by
setting all the other m — s variables to zero.

Uses (7) = O(m*) assignments.

We now have a f’ which is a polynomial in s variables of degree at most
d.

Can be hit using (d + 1)° assignments (Schwarz Zippel Lemma)

Thus, a hitting set of size O(m* - (d + 1)°) = O((m(d + 1))°)

16

The essence of the algorithm

The overall scenario can be reformulated as below. One of the following
always happens:
1. For an appropriately chosen s (depending upon d and e),

3k, ¢ € [n — r] such that det(Mx ¢) has a non-zero monomial of
degree at most s. In this case, we can increase the rank (and repeat)

2. Vk,l € [n—r], det(Mk) has no non-zero monomials of degree at
most s. In this case, we show that r > (1 —¢€) - rk(Q(x1 ... Xxm)).

17

Heavy lifting

Vk, ¢ € [n— r], det(My) has no non-zero monomials of degree at most
s.

Want to show, Condition 1 = r > (1 —¢€) - rk(Q(x1 ...xm)).

Taste of analysis: a special case

We look at the case d = 2,¢ =2/3

19

Taste of analysis: a special case

We look at the case d = 2,¢ =2/3
We can decompose Q(A1 + y1, 0 + Yo ..., Am + ¥m) as

I+ Qu+Lin Qo+l

QO+ 1, A0 + Yoo+ oo A+ ym) =
Aatnde+ye ym) @1 + Lo Qa2 + Lo

Minor of interest My, =

L+aqu(y) +4uly) - ai(y) +4(y) tay) + bu(y)
g21(y) + C21(y) 200 q2r(y) + L2/ (y) to(y) + ba(y)
@)+ oY) oo 14 an¥)+Eely))+ biy)

si(y) + a1(y) e se(y) + ar(y) q(y) +€(y)

where g;i(y), si(y). tj(y), g(y) are quadratic forms, while
Lii(y), ai(y), bj(y), £(y) are linear forms

19

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:
Det(My ¢) = ¢(y)+ monomials of degree at least 2.

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

Hence, we can assume {(y) = 0.

In particular, the matrix Ly, = 0.

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

Hence, we can assume {(y) = 0.

In particular, the matrix Ly, = 0.

In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

Hence, we can assume {(y) = 0.

In particular, the matrix Ly, = 0.

In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
If g(y) — > ai(y) - bi(y) # 0, we can increase the rank.

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

Hence, we can assume {(y) = 0.

In particular, the matrix Ly, = 0.

In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
If g(y) — > ai(y) - bi(y) # 0, we can increase the rank.

So, we can assume g(y) = >_; ai(y) - bi(y)

20

Taste of analysis: a special case

Suppose £(y) # 0, observe the following equality:

Det(My ¢) = ¢(y)+ monomials of degree at least 2.

Thus one can easily find an assignment (yi,...,ym) 's such that
det(My ¢(M1 + y1, A2+ y2,. ..., Am + ¥m) 7 0 and this assignment
increases the rank of Q.

Hence, we can assume {(y) = 0.

In particular, the matrix Ly, = 0.

In this case, observe the following equality.

det(My.¢) = q(y) — X7 ai(y) - bi(y)+ monomials of degree at least 3.
If g(y) — > ai(y) - bi(y) # 0, we can increase the rank.

So, we can assume g(y) = >_; ai(y) - bi(y)
ThUS, Q22 = L21L12.

20

1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

QA1+ Yy, A2+ Y2, o Am+ ym) =
) @1 + Lo LoiLyo

nxn

21

1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

0 258 1 T e s 1) =
(aty1, 22+, ym) @1+ Lo LoiLyo

nxn

Note that
rank (Q(/\l + Y1, AQ + Yo,...)\m —|—ym) = rank(Q(xl,xz, 500 ,Xm))

21

1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

0 258 1 T e s 1) =
(aty1, 22+, ym) @1+ Lo LoiLyo

nxn

Note that

rank (Q(/\l + Y1, AQ + Yo,...)\m —|—ym) = rank(Q(xl,xz, 500 ,Xm))
Now rank(L21L12) <r

21

1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

0 258 1 T e s 1) =
(aty1, 22+, ym) @1+ Lo LoiLyo

nxn
Note that

rank (Q(A1 + y1, 2+ Y2, -+, Am + Ym) = rank(Q(x1, X2, . . -, Xm))

Now rank(L21L12) <r

We get that the rank(Q(A1 + y1, A2 + yo, .., Am + Ym)) < 3r

21

1/3-rd approximation

Hence,

I+ Quu+Lin Qu+ L

0 258 1 T e s 1) =
(aty1, 22+, ym) @1+ Lo LoiLyo

nxn
Note that

rank (Q(A1 + y1, 2+ Y2, -+, Am + Ym) = rank(Q(x1, X2, . . -, Xm))

Now rank(L21L12) <r

We get that the rank(Q(A1 + y1, A2 + yo, .., Am + Ym)) < 3r

So rank(Q(A1, A2, ..., Am)) is already a 1/3-approximation of
rank(Q(x1, X2, - .., Xm)).

21

General Case

[B
M = .
A c}
nXn

22

General Case

[B
A C i
nXn

Det(M) = det(C — AL~ B)det(L)

M:

22

General Case

[B
A C i
nXn

Det(M) = det(C — AL~ B)det(L)

M:

This directly gives,
det(My) = —a-(adj(l, + L)) - b+ c - (det(/, + L)).

22

General Case

[B
A C i
nXn

Det(M) = det(C — AL~ B)det(L)

M:

This directly gives,
det(My) = —a-(adj(l, + L)) - b+ c - (det(/, + L)).

After staring for sometime,

W = —A-(adj(l, + L)) - B+ C - (det(/, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)™-entry for all 1 < u,v < n—r.

22

W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

23

W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

Recall that we wanted to analyze Vk, ¢ € [n — r], homs(det(My ¢)) = 0.

23

W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

Recall that we wanted to analyze Vk, ¢ € [n — r], homs(det(My ¢)) = 0.

That is, homsW = 0!

23

W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

Recall that we wanted to analyze Vk, ¢ € [n — r], homs(det(My ¢)) = 0.

That is, homsW = 0!
We finally get

r—i—1

W= —-A Z_:(—l)’p;- Z (=LY | | B+(po—pr+---+(-1)"p,)-C.
i=0 j=0

We have to study the homg(W).

23

W = —A-(adj(l, + L)) - B + C - (det(l, + L)).

Here W is the (n— r) x (n — r) matrix polynomial having the polynomial
det(M,,) as its (u, v)®-entry for all 1 < u,v < n—r.

Recall that we wanted to analyze Vk, ¢ € [n — r], homs(det(My ¢)) = 0.

That is, homsW = 0!

We finally get

r—i—1

W= —-A Z_:(—l)’p;- Z (=LY | | B+(po—pr+---+(-1)"p,)-C.
i=0 j=0

We have to study the homg(W).
This work does that!
Finally

Lemma
If hom;(W) = 0,Vi € [s], rank(Q(x1,x2, ..., xm)) < r(l + :=577)

23

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a

constant d.

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

A limitation to this approach: we need PIT for the entries, at least.

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

e A limitation to this approach: we need PIT for the entries, at least.

e Other models where we know PIT for the entries, eg: Sparse,
ROABP? - OPEN?

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

e A limitation to this approach: we need PIT for the entries, at least.

e Other models where we know PIT for the entries, eg: Sparse,
ROABP? - OPEN?

e Approximating algebraic rank over fields of small characteristic?

24

Conclusion and Open Problems

e Having Vishwas in BJP helps: yields stronger results. Enables us to
solve non-linear problems too.

e We give a deterministic PTAS for the Commutative rank problem
when the entries are polynomials with degrees bounded by a
constant d.

e Generalizing it to stronger models? - Eg: when entries are given as
sparse polynomials, ROABP, formulas or circuits.

e A limitation to this approach: we need PIT for the entries, at least.

e Other models where we know PIT for the entries, eg: Sparse,
ROABP? - OPEN?

e Approximating algebraic rank over fields of small characteristic?

e No Jacobian criterion! Constant inseparable degree (PSS'16)?

24

Thanks a lot for attending :)

