A Quadratic Size-Hierarchy Theorem for Small-Depth Multilinear Formulas

Suryajith Chillara

Joint work with
Nutan Limaye Srikanth Srinivasan

WACT 2019, ICTS-TIFR, Bangalore.
28.03.2019

Fundamental Question

More resources $\stackrel{?}{\Longrightarrow}$ More computational power.

Fundamental Question

More resources $\xlongequal{?}$ More computational power.

Answer: Yes in many cases.
Eg., Time Hierarchy and Space Hierarchy theorems in the classical complexity.

Classical Hierarchy Theorems over Turing Machines

Time Hierarchy Theorem

For every $t(n)$ and $\delta>0$, there is a decision problem which can be solved in time $t(n)$ but not in the time $t(n)^{1-\delta}$, i.e.,
$\operatorname{DTIME}\left(t(n)^{1-\delta}\right) \subsetneq \operatorname{DTIME}(t(n))$.

Space Hierarchy Theorem

For every $s(n)$ and $\delta>0$, there is a language L that is decidable in space $s(n)$ but not in space $s(n)^{1-\delta}$, i.e., $\operatorname{SPACE}\left(s(n)^{1-\delta}\right) \subsetneq \operatorname{SPACE}(s(n))$.

Generalized Meta Theorem for Any Resource

For every $f(n)$, there is a function that can be computed using $f(n)$ resources but cannot be computed using $\ll f(n)$ resources. This gives us a strict computational hierarchy between $\ll f(n)$ resources and $f(n)$ resources.

Generalized Meta Theorem for Any Resource

For every $f(n)$, there is a function that can be computed using $f(n)$ resources but cannot be computed using $\ll f(n)$ resources.

This gives us a strict computational hierarchy between $\ll f(n)$ resources and $f(n)$ resources.

- Our goal: Similar theorems for Arithmetic Formulas.

Generalized Meta Theorem for Any Resource

For every $f(n)$, there is a function that can be computed using $f(n)$ resources but cannot be computed using $\ll f(n)$ resources.

This gives us a strict computational hierarchy between $\ll f(n)$ resources and $f(n)$ resources.

- Our goal: Similar theorems for Arithmetic Formulas.
- Resource: Size of the arithmetic formula, which corresponds to the maximum number of arithmetic operations.

Computing polynomials syntactically

Definition

An Arithmetic Formula Φ over the field \mathbb{F} and the set of variables $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a directed tree as follows:

- Leaf nodes are labelled either by a variable or a field element from \mathbb{F} and the root node outputs the polynomial.
- Every other node is labelled by either \times or +).
- The size of Φ is the number of nodes present in it.
- The depth of Φ is the length of the longest leaf to root path.

Size Hierarchy for Arithmetic Formulas

More size $\stackrel{?}{\Longrightarrow}$ More computational power.

Size Hierarchy for Arithmetic Formulas

More size $\stackrel{?}{\Longrightarrow}$ More computational power.

Fundamental Question Rephrased: Size Hierarchy

For any $\delta>0$ and $s=n^{c}$, show that there is a polynomial P_{n} that it is computed by a formula of size $s(n)$ but not by formulas of size $s(n)^{1-\delta}$.

Size Hierarchy for Arithmetic Formulas

More size $\stackrel{?}{\Longrightarrow}$ More computational power.

Fundamental Question Rephrased: Size Hierarchy

For any $\delta>0$ and $s=n^{c}$, show that there is a polynomial P_{n} that it is computed by a formula of size $s(n)$ but not by formulas of size $s(n)^{1-\delta}$.
\sim No techniques are available to prove size lower bounds any better than $\tilde{\Omega}\left(n^{3}\right)$ [Kayal et al., 2016, Balaji et al., 2016] for small depth circuits and $\Omega\left(n^{2}\right)$ [Kalorkoti, 1985] for general formulas.

Size Hierarchy for Arithmetic Formulas

More size $\xlongequal{?}$ More computational power.

Fundamental Question Rephrased: Size Hierarchy

For any $\delta>0$ and $s=n^{c}$, show that there is a polynomial P_{n} that it is computed by a formula of size $s(n)$ but not by formulas of size $s(n)^{1-\delta}$.
\sim No techniques are available to prove size lower bounds any better than $\tilde{\Omega}\left(n^{3}\right)$ [Kayal et al., 2016, Balaji et al., 2016] for small depth circuits and $\Omega\left(n^{2}\right)$ [Kalorkoti, 1985] for general formulas.
\leftrightarrow Some techniques are available to prove lower bounds against formulas when every computation is restricted to be multilinear.

Multilinear polynomial

A polynomial $f \in \mathbb{F}[X]$ is called multilinear if the degree of f in each variable $x \in X$ is at most 1 .

Multilinear polynomial

A polynomial $f \in \mathbb{F}[X]$ is called multilinear if the degree of f in each variable $x \in X$ is at most 1 .

Multilinear Formula
An arithmetic formula is said to be multilinear if the polynomial computed at each gate is multilinear.

Multilinear polynomial

A polynomial $f \in \mathbb{F}[X]$ is called multilinear if the degree of f in each variable $x \in X$ is at most 1 .

Multilinear Formula
An arithmetic formula is said to be multilinear if the polynomial computed at each gate is multilinear.

Syntactic Multilinearity
A product is said to be syntactically multilinear if the inputs are defined over disjoint sets of variables.

Multilinear polynomial

A polynomial $f \in \mathbb{F}[X]$ is called multilinear if the degree of f in each variable $x \in X$ is at most 1 .

Multilinear Formula
An arithmetic formula is said to be multilinear if the polynomial computed at each gate is multilinear.

Syntactic Multilinearity

A product is said to be syntactically multilinear if the inputs are defined over disjoint sets of variables.
$\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)-\left(x_{1}+x_{4}\right)\left(x_{1}+x_{2}\right)=x_{1} x_{3}+x_{2} x_{3}-x_{1} x_{4}-x_{2} x_{4}$.
This is not a syntactically multilinear computation.

Size Hierarchy for Multilinear Formulas

Theorem ([Raz, 2004, Raz and Yehudayoff, 2008])
For any $s=n^{c}$ where c is a fixed constant, there is an explicit polynomial that can be computed by a multilinear arithmetic formula of size $s(n)$ but not by any multilinear arithmetic formulas of size $s(n)^{\alpha}$ where $\alpha \leq 1 / 30$.

Size Hierarchy for Multilinear Formulas

Theorem ([Raz, 2004, Raz and Yehudayoff, 2008])
For any $s=n^{c}$ where c is a fixed constant, there is an explicit polynomial that can be computed by a multilinear arithmetic formula of size $s(n)$ but not by any multilinear arithmetic formulas of size $s(n)^{\alpha}$ where $\alpha \leq 1 / 30$.

Theorem (This work)

For any $\delta \in(0,1 / 2)$ and $s(n)=n^{c}$ for some fixed constant c, there is an explicit polynomial that can be computed by a multilinear arithmetic formula of size $s(n)$ and depth-3 but not by any multilinear formulas of size $s^{0.5-\delta}$ and depth $O(\log s / \log \log s)$.

Related Work

Our result is incomparable to the works [Raz, 2004] and [Raz and Yehudayoff, 2008].

Related Work

Our result is incomparable to the works [Raz, 2004] and [Raz and Yehudayoff, 2008].

[Raz, 2004, Raz and Yehudayoff, 2008]	This Work
There is no restriction on the depth of multilinear formulas.	We can prove a size lower bound only when the depth is $O(\log s / \log \log s)$.
The separation they show is s vs s^{α} where $\alpha<1 / 30$, even at small-depths.	At small-depths, we show a better separation of s vs $s^{1 / 2-\delta}$.
The hard polynomial has a formula of size s and depth $\Omega(\sqrt{\log s})$.	The hard polynomial has a formula of size s and depth 3.

Tools \& Techniques

Theme of the proofs

- We can define a suitable complexity measure $\mu: \mathbb{F}[X] \mapsto \mathbb{N}$ such that the following holds:
- If f is computed by a small-depth multilinear formula then $\mu(f)$ is small.
- For the hard polynomial $P, \mu(P)$ is large.

Tool 1: Partial Derivative Matrix \& Complexity

Measure

Following Raz [Raz, 2004], we too use the rank arguments.

- Let $\rho: X \mapsto Y \sqcup Z$ be a partitioning function such that $|Y|=|Z|$.

Tool 1: Partial Derivative Matrix \& Complexity

Measure

Following Raz [Raz, 2004], we too use the rank arguments.

- Let $\rho: X \mapsto Y \sqcup Z$ be a partitioning function such that $|Y|=|Z|$.

$$
f=\left.\sum_{i=1}^{2^{n}} c_{i} \cdot m_{i} \quad \mapsto \quad f\right|_{\rho}=\sum_{i=1}^{2^{n}} c_{i} \cdot m_{i, Y} \cdot m_{i, Z}
$$

Tool 1: Partial Derivative Matrix \& Complexity

Measure

Following Raz [Raz, 2004], we too use the rank arguments.

- Let $\rho: X \mapsto Y \sqcup Z$ be a partitioning function such that $|Y|=|Z|$.

$$
f=\left.\sum_{i=1}^{2^{n}} c_{i} \cdot m_{i} \quad \mapsto \quad f\right|_{\rho}=\sum_{i=1}^{2^{n}} c_{i} \cdot m_{i, Y} \cdot m_{i, Z}
$$

Complexity of f under ρ is $\operatorname{rank}\left(M_{(Y, Z)}\left(\left.f\right|_{\rho}\right)\right)$.
Fact: $\operatorname{rank}\left(M_{(Y, Z)}\left(\left.f\right|_{\rho}\right)\right) \leq 2^{\frac{|Y|+|Z|}{2}}$.

Example

Consider the polynomial $f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}\right)$ and the partition map of $\left\{x_{1}, x_{2}\right\}$ such that

$$
x_{1} \mapsto y ; \quad x_{2} \mapsto z
$$

It follows that $\left.f\right|_{\rho}=(y+z)$ and thus,

$$
M_{(\{y\},\{z\})}\left(\left.f\right|_{\rho}\right)=\begin{gathered}
1 \\
1 \\
y \\
\hline 0 \\
1 \\
1
\end{gathered} 0 .
$$

$$
\operatorname{rank}\left(M_{(\{y\},\{z\})}\left(\left.f\right|_{\rho}\right)\right)=2
$$

Example

Consider the polynomial $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)$ and the partition map of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that

$$
x_{1} \mapsto y_{1} ; \quad x_{2} \mapsto z_{1} ; \quad x_{3} \mapsto y_{2} \quad ; x_{4} \mapsto z_{2}
$$

It follows that $\left.f\right|_{\rho}=\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right)=y_{1} y_{2}+y_{1} z_{2}+z_{1} y_{2}+z_{1} z_{2}$ and thus,

$$
M_{\left(\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}\right)}\left(\left.f\right|_{\rho}\right)=\begin{aligned}
& 1 \\
& y_{1} \\
& y_{2} \\
& y_{1} y_{2}
\end{aligned}\left(\begin{array}{cccc}
1 & z_{1} & z_{2} & z_{1} z_{2} \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

$\operatorname{rank}\left(M_{\left(\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}\right)}\left(\left.f\right|_{\rho}\right)\right)=4$.

Example

Consider the polynomial $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)$ and the partition map of $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ such that

$$
x_{1} \mapsto y_{1} ; \quad x_{2} \mapsto y_{2} ; \quad x_{3} \mapsto z_{1} \quad ; x_{4} \mapsto z_{2}
$$

It follows that $\left.f\right|_{\rho}=\left(y_{1}+y_{2}\right)\left(z_{1}+z_{2}\right)=y_{1} z_{1}+y_{1} z_{2}+y_{2} z_{1}+y_{2} z_{2}$ and thus,

$$
M_{\left(\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}\right)}\left(\left.f\right|_{\rho}\right)=\begin{aligned}
& 1 \\
& y_{1} \\
& y_{2} \\
& y_{1} y_{2}
\end{aligned}\left(\begin{array}{cccc}
1 & z_{1} & z_{2} & z_{1} z_{2} \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
$$

$\operatorname{rank}\left(M_{\left(\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}\right)}\left(\left.f\right|_{\rho}\right)\right)=1$.

Observation

- Given a partition ρ of the variables, we can construct an easy polynomial that has full rank w.r.t ρ.

Observation

- Given a partition ρ of the variables, we can construct an easy polynomial that has full rank w.r.t ρ.
- Let the variable mapping under ρ be the following.

$$
\begin{array}{rlll}
x_{i_{1}} \mapsto y_{1} ; & x_{i_{2}} \mapsto y_{2} ; & \ldots & ; \\
x_{j_{1}} \mapsto z_{1} ; & x_{i_{2}} \mapsto y_{m} ; \\
z_{2} ; & \ldots & ; & x_{j_{m}} \mapsto z_{m} .
\end{array}
$$

Observation

- Given a partition ρ of the variables, we can construct an easy polynomial that has full rank w.r.t ρ.
- Let the variable mapping under ρ be the following.

$$
\begin{array}{rllll}
x_{i_{1}} \mapsto y_{1} ; & x_{i_{2}} \mapsto y_{2} ; & \ldots & ; & x_{i_{m}} \mapsto y_{m} ; \\
x_{j_{1}} \mapsto z_{1} ; & x_{j_{2}} \mapsto z_{2} ; & \ldots & ; & x_{j_{m}} \mapsto z_{m} .
\end{array}
$$

- Under ρ, it is easy to see that the polynomial defined as follows will have full rank.

$$
\begin{aligned}
\Gamma_{\rho}(X) & =\left(x_{i_{1}}+x_{j_{1}}\right)\left(x_{i_{2}}+x_{j_{2}}\right) \cdots\left(x_{i_{m}}+x_{j_{m}}\right) \\
\Gamma_{\rho}(\rho(X)) & =\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right) \cdots\left(y_{m}+z_{m}\right)
\end{aligned}
$$

Observation

- Given a partition ρ of the variables, we can construct an easy polynomial that has full rank w.r.t ρ.
- Let the variable mapping under ρ be the following.

$$
\begin{array}{rllll}
x_{i_{1}} \mapsto y_{1} ; & x_{i_{2}} \mapsto y_{2} ; & \ldots & ; & x_{i_{m}} \mapsto y_{m} ; \\
x_{j_{1}} \mapsto z_{1} ; & x_{j_{2}} \mapsto z_{2} ; & \ldots & ; & x_{j_{m}} \mapsto z_{m} .
\end{array}
$$

- Under ρ, it is easy to see that the polynomial defined as follows will have full rank.

$$
\begin{aligned}
\Gamma_{\rho}(X) & =\left(x_{i_{1}}+x_{j_{1}}\right)\left(x_{i_{2}}+x_{j_{2}}\right) \cdots\left(x_{i_{m}}+x_{j_{m}}\right) \\
\Gamma_{\rho}(\rho(X)) & =\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right) \cdots\left(y_{m}+z_{m}\right)
\end{aligned}
$$

- Γ_{ρ} has a very small formula.

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- A polynomial P_{S} which can be defined as follows has full rank.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- A polynomial P_{S} which can be defined as follows has full rank.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Road map:

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- A polynomial P_{S} which can be defined as follows has full rank.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Road map:

1. Construct a suitable set of partitions S such that $|S|$ is not too large.

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- A polynomial P_{S} which can be defined as follows has full rank.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Road map:

1. Construct a suitable set of partitions S such that $|S|$ is not too large.
2. Show that a multilinear formula of small size and depth is not of full rank w.r.t at least one of the partitions.

Observation

- Instead, consider a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- A polynomial P_{S} which can be defined as follows has full rank.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Road map:

1. Construct a suitable set of partitions S such that $|S|$ is not too large.
2. Show that a multilinear formula of small size and depth is not of full rank w.r.t at least one of the partitions.
3. Construct a polynomial from S as defined above.

Example

- Consider fixed sets Y, Z such that $|Y|=|Z|$.

Example

- Consider fixed sets Y, Z such that $|Y|=|Z|$.
- For $i \in[2]$, let $Y=Y_{1} \sqcup Y_{2}$ and $Z=Z_{1} \sqcup Z_{2}$.

Example

- Consider fixed sets Y, Z such that $|Y|=|Z|$.
- For $i \in$ [2], let $Y=Y_{1} \sqcup Y_{2}$ and $Z=Z_{1} \sqcup Z_{2}$.
- For $i \in[2]$, let $g_{i} \in \mathbb{F}\left[Y_{i} \cup Z_{i}\right]$ and $\left|Y_{i}\right| \neq\left|Z_{i}\right|$.

Example

- Consider fixed sets Y, Z such that $|Y|=|Z|$.
- For $i \in$ [2], let $Y=Y_{1} \sqcup Y_{2}$ and $Z=Z_{1} \sqcup Z_{2}$.
- For $i \in[2]$, let $g_{i} \in \mathbb{F}\left[Y_{i} \cup Z_{i}\right]$ and $\left|Y_{i}\right| \neq\left|Z_{i}\right|$.

Example

- Consider fixed sets Y, Z such that $|Y|=|Z|$.
- For $i \in$ [2], let $Y=Y_{1} \sqcup Y_{2}$ and $Z=Z_{1} \sqcup Z_{2}$.
- For $i \in[2]$, let $g_{i} \in \mathbb{F}\left[Y_{i} \cup Z_{i}\right]$ and $\left|Y_{i}\right| \neq\left|Z_{i}\right|$.

$\operatorname{rank}\left(M_{(Y, Z)}\left(g_{1} \cdot g_{2}\right)\right)=\operatorname{rank}\left(M_{\left(Y_{1}, Z_{1}\right)}\left(g_{1}\right)\right) \cdot \operatorname{rank}\left(M_{\left(Y_{2}, Z_{2}\right)}\left(g_{2}\right)\right)$

$$
\leq 2^{\frac{\left|r_{1}\right|+\left|Z_{1}\right|-1}{2}} \cdot 2^{\frac{\left|Y_{2}\right|+\left|Z_{2}\right|-1}{2}}=2^{\frac{|Y|+|Z|}{2}-1} .
$$

Observation

- Consider a product of t polynomials, $f=f_{1} f_{2} \cdots f_{t}$ where f_{i} 's are defined over the disjoint sets $X_{1}, X_{2}, \cdots, X_{t}$.

Observation

- Consider a product of t polynomials, $f=f_{1} f_{2} \cdots f_{t}$ where f_{i}^{\prime} s are defined over the disjoint sets $X_{1}, X_{2}, \cdots, X_{t}$.
- Consider a partition map $\rho: X \mapsto Y \sqcup Z$ and let

$$
Y_{i}=\rho\left(\operatorname{vars}\left(f_{i}\right)\right) \cap Y ; \quad Z_{i}=\rho\left(\operatorname{vars}\left(f_{i}\right)\right) \cap Z
$$

Observation

- Consider a product of t polynomials, $f=f_{1} f_{2} \cdots f_{t}$ where f_{i} 's are defined over the disjoint sets $X_{1}, X_{2}, \cdots, X_{t}$.
- Consider a partition map $\rho: X \mapsto Y \sqcup Z$ and let

$$
Y_{i}=\rho\left(\operatorname{vars}\left(f_{i}\right)\right) \cap Y ; \quad Z_{i}=\rho\left(\operatorname{vars}\left(f_{i}\right)\right) \cap Z
$$

- If ρ is such that there there ℓ factors f_{i} such that $\left|Y_{i}\right| \neq\left|Z_{i}\right|$, we get that

$$
\operatorname{rank}\left(M_{(Y, Z)}\left(\left.f\right|_{\rho}\right)\right) \leq 2^{\frac{|Y|+|Z|}{2}-\frac{\ell}{2}}
$$

Tool 2: Product decomposition of Multilinear Formulas

Lemma (Product Decomposition, [Shpilka and Yehudayoff, 2010])
Any multilinear formula of size s_{0} and product depth Δ, over n variables can be decomposed into a sum of $s=s_{0} n$ many products each of which has a lot of factors.

$$
f=\sum_{i=1}^{s} f_{i}=\sum_{i=1}^{s} f_{i, 1} \cdot f_{i, 2} \cdot \ldots \cdot f_{i, t} \text { where } t \geq n^{1 / 2 \Delta}
$$

and

- for all $i \in[s]$ and $j \in[t],\left|\operatorname{vars}\left(f_{i, j}\right)\right|>1$,
- for all $i \in[s], f_{i, 1}, f_{i, 2}, \cdots, f_{i, t}$ are defined over disjoint sets of variables.

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

- We know that $f=\sum_{i=1}^{s} f_{i}$ where $f_{i}=f_{i 1} f_{i 2} \cdots f_{i t}$.

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

- We know that $f=\sum_{i=1}^{s} f_{i}$ where $f_{i}=f_{i 1} f_{i 2} \cdots f_{i t}$.
- Let $\rho: X \rightarrow Y \cup Z$ is such that for each i, there are at least ℓ of the factors $f_{i j}$ with $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$, then

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

- We know that $f=\sum_{i=1}^{s} f_{i}$ where $f_{i}=f_{i 1} f_{i 2} \cdots f_{i t}$.
- Let $\rho: X \rightarrow Y \cup Z$ is such that for each i, there are at least ℓ of the factors $f_{i j}$ with $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$, then

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

- We know that $f=\sum_{i=1}^{s} f_{i}$ where $f_{i}=f_{i 1} f_{i 2} \cdots f_{i t}$.
- Let $\rho: X \rightarrow Y \cup Z$ is such that for each i, there are at least ℓ of the factors $f_{i j}$ with $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$, then

$$
\operatorname{rank}\left(M_{(Y, Z)}\left(\left.f\right|_{\rho}\right)\right) \leq \sum_{i \in[s]} \operatorname{rank}\left(M_{(Y, Z)}\left(\left.f_{i}\right|_{\rho}\right)\right) \leq s \cdot 2^{\frac{|Y|+|Z|}{2}-\frac{\ell}{2}}
$$

Subadditivity of rank

Let $g, g_{1}, g_{2}, \cdots, g_{r}$ be polynomials over $\mathbb{F}[Y \cup Z]$ such that

$$
g=\sum_{i \in[r]} g_{i}
$$

then

$$
\operatorname{rank}\left(M_{(Y, Z)}(g)\right) \leq \sum_{i \in[r]} \operatorname{rank}\left(M_{(Y, Z)}\left(g_{i}\right)\right)
$$

- We know that $f=\sum_{i=1}^{s} f_{i}$ where $f_{i}=f_{i 1} f_{i 2} \cdots f_{i t}$.
- Let $\rho: X \rightarrow Y \cup Z$ is such that for each i, there are at least ℓ of the factors $f_{i j}$ with $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$, then

$$
\operatorname{rank}\left(M_{(Y, Z)}\left(\left.f\right|_{\rho}\right)\right) \leq \sum_{i \in[s]} \operatorname{rank}\left(M_{(Y, Z)}\left(\left.f_{i}\right|_{\rho}\right)\right) \leq s \cdot 2^{\frac{|Y|+|Z|}{2}-\frac{\ell}{2}}
$$

We want $s \cdot 2^{\frac{|Y|+|Z|}{2}-\frac{\ell}{2}}$ to be strictly less than $2^{\frac{|Y|+|Z|}{2}}$ and thus we want $\ell>2 \log s$.

Rephrasing the problem

For a partition ρ :

- For each i, we want at least ℓ many j 's to be such that $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$.

Rephrasing the problem

For a partition ρ :

- For each i, we want at least ℓ many j 's to be such that $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$.
- It is sufficient to prove that for each i, there exists a set A of ℓ many j 's such that $\left|Y_{i j}\right|-\left|X_{i j}\right| / 2 \equiv 1 \bmod 2$ for each of them. Let the bad event against this event be denoted by E_{i}.

Rephrasing the problem

For a partition ρ :

- For each i, we want at least ℓ many j 's to be such that $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$.
- It is sufficient to prove that for each i, there exists a set A of ℓ many j 's such that $\left|Y_{i j}\right|-\left|X_{i j}\right| / 2 \equiv 1 \bmod 2$ for each of them. Let the bad event against this event be denoted by E_{i}.

Rephrasing the problem

For a partition ρ :

- For each i, we want at least ℓ many j 's to be such that $\left|Y_{i j}\right| \neq\left|Z_{i j}\right|$.
- It is sufficient to prove that for each i, there exists a set A of ℓ many j 's such that $\left|Y_{i j}\right|-\left|X_{i j}\right| / 2 \equiv 1 \bmod 2$ for each of them. Let the bad event against this event be denoted by E_{i}.

For a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$:

- E_{i} is also defined by a system of linear equations.
- It is sufficient to show that, for each i,

$$
\mathbb{P}_{\rho \in S}\left[E_{i}\right]<1 / s
$$

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- Show that the polynomial computed by a multilinear formula of size s and small depth has less than full rank for at least one of the partitions in S.

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- Show that the polynomial computed by a multilinear formula of size s and small depth has less than full rank for at least one of the partitions in S.
- Construct a full rank polynomial for the set S.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- Show that the polynomial computed by a multilinear formula of size s and small depth has less than full rank for at least one of the partitions in S.
- Construct a full rank polynomial for the set S.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Polynomial P_{S} has a small formula of size $O(|S| n)$

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- Show that the polynomial computed by a multilinear formula of size s and small depth has less than full rank for at least one of the partitions in S.
- Construct a full rank polynomial for the set S.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Polynomial P_{S} has a small formula of size $O(|S| n)$

Rephrasing the problem

- Construct a set of partitions $S=\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{m}\right\}$.
- Show that the polynomial computed by a multilinear formula of size s and small depth has less than full rank for at least one of the partitions in S.
- Construct a full rank polynomial for the set S.

$$
P_{S}(X)=\sum_{\rho \in S} \mathbf{1}_{\rho} \cdot \Gamma_{\rho}(X)
$$

- Polynomial P_{S} has a small formula of size $O(|S| n)$

Probabilistic Method	Our derandomization using subspace evading sets
$m=O(n s)$	$m=O\left(n s^{2}\right)$

Thank you!*†

*Figure of the coefficient matrix were sourced from Ramprasad Saptharishi's survey, under cc (\$) licence.
${ }^{\dagger}$ The theme of these slides is based on mtheme by matze https://github.com/matze/mtheme, under (Cc)(〇) licence.

