09:30 to 10:30 |
Edriss S. Titi (University of Cambridge, Cambridgeshire, UK) |
A New Blow-up Criterion for the 3D Euler Equations: A Computational Study (Online) In this talk we will report the results of a computational investigation of a new blow- up criterion for the 3D incompressible Euler equations, which does not rely on the seminal Beale-Kato Majda blow-up criterion. This criterion is based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler-Voigt equations. The new criterion is only known to be sufficient criterion for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well known to occur.
Notably, the Voigt inviscid regularization approach applies equally to other hydrody- namical models, and it can be shown that its solutions converge, as the regularization parameter α → 0, to the corresponding solutions of the underlying hydrodynamical model for as long as the latter exist.
|
|
|
12:00 to 13:00 |
Cornelius Rampf (University of Vienna, Austria) |
Eye of the Tyger: early-time resonances and singularities in the inviscid Burgers equation (Online) We chart a singular landscape in the temporal domain of the inviscid Burgers equation in one space dimension for single-mode initial conditions. These so far undetected complex singularities are arranged in an eye shape entered around the origin in time. Interestingly, since the eye is squashed along the imaginary time axis, complex-time singularities can become physically relevant at times well before the first real singularity—the pre-shock. Indeed, employing a time-Taylor representation for the velocity around t=0, loss of convergence occurs roughly at 2/3 of the pre-shock time for the considered single- and multi-mode models. Furthermore, the loss of convergence is accompanied with the appearance of initially localized resonant behaviour which, as we claim, is a temporal manifestation of the so-called tyger phenomenon, reported in Galerkin-truncated implementations of inviscid fluids [Ray et al., Phys. Rev. E 84, 016301 (2011)]. We support our findings of such early-time-tygers by two complementary and independent means, namely by an asymptotic analysis of the time-Taylor series for the velocity, as well as by a novel singularity theory that employs Lagrangian coordinates.
Finally, we apply two methods that reduce the amplitude of early-time tygers, one is tyger purging which removes large Fourier modes from the velocity, and is a variant of a known procedure in the literature. The other method realizes an iterative UV completion, which, most interestingly, iteratively restores the conservation of energy once the Taylor series for the velocity diverges. Our techniques are straightforwardly adapted to higher dimensions and/or applied to other equations of hydrodynamics.
|
|
|
14:30 to 15:30 |
Berengere Dubrulle (CNRS, Paris, France) |
Irreversibility and Singularities (Online)
In a viscous fluid, the energy dissipation is the signature of the breaking of the time-reversal symmetry (hereafter TSB) t-> -t, u-> -u, where u is the velocity. This symmetry of the Navier-Stokes equations is explicitly broken by viscosity. Yet, in the limit of large Reynolds numbers, when flow becomes turbulent, the non-dimensional energy dissipation per unit mass becomes independent of the viscosity, meaning that the time-reversal symmetry is spontaneously broken. Natural open questions related to such observation are: what is the mechanism of this spontaneous symmetry breaking? Can we associate the resulting time irreversibility to dynamical processes occurring in the flow? Can we devise tools to locally measure this time irreversibility?
In this talk, I first show that the TSB is indeed akin to a spontaneous phase transition in the Reversible Navier-Stokes equations, a modification of the Navier-Stokes equation suggested by G. Gallavotti to ensure energy conservation and relevance of statistical physics interpretation. I then discuss the mechanism of the TSB in Navier-Stokes via quasi-singularities that create a non-viscous dissipation and exhibit the tools to track them. I apply them to time and space-resolved Lagrangian and Eulerian velocity measurements in a turbulent von Karman flow. I finally compare Eulerian and Lagrangian signatures of irreversibility, and link them with peculiar properties of the local velocity field or trajectories.
|
|
|
16:00 to 17:00 |
Nicolas Besse (CNRS, Paris, France) |
Around the quasilinear approximation of the Vlasov equation (Online) In this talk we study the Hamiltonian dynamics of charged particles subject to a non self-consistent stochastic electric field, when the plasma is in the so-called weak
turbulent regime. We show that the asymptotic limit of the Vlasov equation is a diffusion equation in the velocity space, but homogeneous in the physical space.
We obtain a diffusion matrix, quadratic with respect to the electric field, which can be related to the diffusion matrix of the resonance broadening theory and of the quasilinear theory,
depending on whether the typical autocorrelation time of particles is finite or not. In the self-consistent deterministic case, using a convenient scaling, we show that the asymptotic distribution function is homogenized in the space variables, while the electric field converges weakly to zero. We also show that the lack of compactness in time for the electric field is necessary to obtain a genuine diffusion limit. By contrast, time compactness property leads to a “cheap” version of the Landau damping: the electric field converges strongly to zero, implying the vanishing of the diffusion matrix, while the distribution function relaxes, in a weak topology,
towards a spatially homogeneous stationary solution of the Vlasov-Poisson system. Finally, in the self-consistent case, without scaling, we prove the validity of the standard quasilinear approximation of the Vlasov-Poisson by a diffusion equation.
|
|
|