The Mathematical Mechanic
Publisher: Priceton University Press
Author: Mark Levi
Book Description:

 

ISBN: 9780691242057

Link to publisher's page

 

Everybody knows that mathematics is indispensable to physics—imagine where we’d be today if Einstein and Newton didn’t have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist. Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it’s possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles. The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us.


Mathematical Circles (Russian Experience)
Publisher: American Mathematical Society (AMS)
Author: Dmitri Fomin, Sergey Genkin, Ilia V. Itenberg
Book Description:

This is a sample of rich Russian mathematical culture written by professional mathematicians with great experience in working with high school students … Problems are on very simple levels, but building to more complex and advanced work … [contains] solutions to almost all problems; methodological notes for the teacher … developed for a peculiarly Russian institution (the mathematical circle), but easily adapted to American teachers' needs, both inside and outside the classroom.


A Decade of the Berkeley Math Circle: The American Experience, Volume I
Publisher: AMS and the Mathematical Sciences Research Institute
Editor: Zvezdelina Stankova, Tom Rike
Book Description:

Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors—from university professors to high school teachers to business tycoons—have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders.

Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions.


A Decade of the Berkeley Math Circle: The American Experience, Volume II
Publisher: AMS and the Mathematical Sciences Research Institute (MSRI)
Editor: Zvezdelina Stankova and Tom Rike
Book Description:

Based on a dozen of math circle sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still "obeying the rules," and making connections between problems, ideas, and theories.

The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. "Learning from our own mistakes" often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by "getting your hands dirty" with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial.


Kiselev's Geometry: Book 1, Planimetry
Publisher: Sumizdat
Author: Kiselev
Book Description:

This is a wonderful, easy-going introduction to plane geometry, which was used for decades as a regular textbook in Russian middle schools. It has been translated from its original Russian to English by one of UC Berkeley's very own math instructors, Professor Alexander Givental.

Pages