IMC Resources | ICTS


Proofs that Really Count: The Art of Combinatorial Proof
Publisher: Mathematical Association of America (MAA)
Author: Arthur T. Benjamin and Jennifer J. Quinn
Excerpt from Book:

"Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The arguments primarily take one of two forms:

  • A counting question is posed and answered in two different ways. Since both answers solve the same question, they must be equal.
  • Two different sets are described, counted, and a correspondence found between them. One-to-one correspondences guarantee sets of the same size. Almost one-to-one correspondences take error terms into account. Even many-to-one correspondences are utilized.

The book explores more than 200 identities throughout the text and exercises, frequently emphasizing numbers not often thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels from high school math students to professional mathematicians."


Mathematical Adventures For Students and Amateurs
Publisher: Mathematical Association of America (MAA)
Editor: David F. Hayes and Tatiana Shubin
Excerpt from Book:

"How should you encode a message to an extraterrestrial? What do frogs and powers of 2 have in common? How many faces does the Stella Octangula have? Is a plane figure of constant diameter a circle, and what does this have to do with NASA? Is there any such thing as a truly correct map? What patterns are possible in juggling? What do all of these questions have in common? They--and many others--are answered in this book."

"This is a partial record of the Bay Area Mathematical Adventures (BAMA), a lecture series for high school students (and incidentally their teachers, parents, and other interested adults) hosted by San Jose State and Santa Clara Universities in the San Francisco Bay Area of California. These lectures are aimed primarily at bright high school students, the emphasis on 'bright', and as a result, the mathematics in some cases is far from what one would expect to see in talks at this level. There are serious mathematical issues addressed here."


Mathematical Omnibus: Thirty Lectures on Classical Mathematics
Publisher: American Mathematical Society (AMS)
Author: Dmitry Fuchs and Serge Tabachnikov
Book Description:

Dmitry Fuchs, a longtime lecturer at the Berkeley Math Circle, has compiled his notes from BMC Sessions into this wonderful book published by AMS. The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an award-winning artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.

Pages