1. Readings in hyperbolic knot theory
(https://www.math.csi.cuny.edu/abhijit/hypknots-reading.html)

2. Introduction to Knots, Knotoids and Virtual Knots:

·         Link 1

·         Link 2

·         Link 3

·         Link 4

·         Link 5

·         Link 6

·         Link 7

·         Link 8

·         Link 9 

·         Link 10

·         Link 11

Louis H. Kauffman

Reference 1

Reference 2

Reference 3

Reference 4

3. J. H.Przytycki, Knots and distributive homology: from arc colorings to Yang-Baxter homology,  Chapter in: New Ideas in Low Dimensional Topology, World Scientific, Vol. 56, March-April 2015, 413-488; e-print: arXiv:1409.7044.

4. Mohamed Elhamdadi:

(1) Zero-divisors and idempotents in quandle rings, Valeriy G. BardakovInder Bir S. PassiMahender Singh

https://arxiv.org/pdf/2001.06843.pdf

(2) Quandle rings, Valeriy G. BardakovInder Bir Singh PassiMahender Singh

https://arxiv.org/pdf/1709.03069.pdf

(3) Ring theoretical aspects of quandles, Mohamed ElhamdadiNeranga FernandoBoris Tsvelikhovskiy

https://arxiv.org/pdf/1805.05908.pdf

5. Abhijit Champanerkar

https://www.math.csi.cuny.edu/~abhijit/hypknots-reading.html

6. J.H.Przytycki

(1) Khovanov Homology: categorification of the Kauffman bracket relation,   

e-print: arXiv:math/0512630 [math.GT]

(2) 3-coloring and other elementary invariants of knots, Banach Center Publications, Vol. 42, {\it Knot Theory}, Warsaw, 1998, 275-295; \\
e-print:\  {\tt  http://arxiv.org/abs/math.GT/0608172}

(3) Knots and distributive homology: from arc colorings to Yang-Baxter homology, Chapter in: {\it New Ideas in Low Dimensional Topology}, World Scientific, Vol. 56, March-April 2015, 413-488; \
e-print: \ {\tt arXiv:1409.7044 [math.GT]}.

(4) Youtube Lectures:

Progress in Yang-Baxter homology:
https://www.youtube.com/watch?v=ZJwUVy8laO0
Lecture VIII:  https://youtu.be/dB1rk7Us-Ag
Lecture VII:   https://youtu.be/gNOANJIZMjg
Lecture VI:    https://youtu.be/OjpOqoHjcls
(Lectures I-V are very elementary undergraduate lectures)