09:30 to 10:45 |
Ara Basmajian (City University of New York, New York, USA) |
The Geodesic flow on hyperbolic surfaces: Two lectures Will be a basic introduction to hyperbolic geometry including the construction of surfaces with such a geometry, their geometric invariants, and the dynamics of the geodesic flow.
|
|
|
11:30 to 12:45 |
John R. Parker (Durham University, Durham, UK) |
Fenchel-Nielsen coordinates for SL(3,C) representations of surface groups In this talk will discuss a method to define Fenchel-Nielsen coordinates for representations of surface groups to SL(3,C). This both generalises and unifies the previous generalisations for PSL(2,C) by Kourouniotis and Tan, for SL(3,R) by Goldman and Zhang and for SU(2,1) by Parker and Platis.
|
|
|
14:30 to 15:30 |
Mahan Mj (Tata Institute of Fundamental Research, Mumbai, India) |
Combination theorems, Bers slices, and holomorphic correspondences Our starting points consist of the simultaneous uniformization theorem for surface groups and the mating construction for polynomials. In part I of the talk, we describe a hybrid construction that simultaneously uniformizes a polynomial and a surface. We provide two constructions for some genus zero orbifolds and polynomials lying in the principal hyperbolic component:
1) For punctured spheres with possibly order 2 orbifold points using orbit equivalence
2) Generalizing (1) to orbifolds that have, in addition, an orbifold point of order > 2. This uses a factor dynamical system.
We conclude by describing the analog of the Bers slice in this context.
In the second part, we will characterize the combinations of polynomials and Fuchsian genus zero orbifold groups as explicit algebraic functions. This allows us to embed the 'product' of Teichm{\"u} spaces of genus zero orbifolds and parameter spaces of polynomials in a larger ambient space of algebraic correspondences.
We will discuss compactifications of such copies of Teichm{\"u}ller spaces in the space of correspondences, and end with a host of open questions.
|
|
|
16:00 to 17:00 |
Sabyasachi Mukherjee (Tata Institute of Fundamental Research, Mumbai, India) |
Combination theorems, Bers slices, and holomorphic correspondences Our starting points consist of the simultaneous uniformization theorem for surface groups and the mating construction for polynomials. In part I of the talk, we describe a hybrid construction that simultaneously uniformizes a polynomial and a surface. We provide two constructions for some genus zero orbifolds and polynomials lying in the principal hyperbolic component:
1) For punctured spheres with possibly order 2 orbifold points using orbit equivalence
2) Generalizing (1) to orbifolds that have, in addition, an orbifold point of order > 2. This uses a factor dynamical system.
We conclude by describing the analog of the Bers slice in this context.
In the second part, we will characterize the combinations of polynomials and Fuchsian genus zero orbifold groups as explicit algebraic functions. This allows us to embed the 'product' of Teichmüller spaces of genus zero orbifolds and parameter spaces of polynomials in a larger ambient space of algebraic correspondences.
We will discuss compactifications of such copies of Teichmüller spaces in the space of correspondences, and end with a host of open questions.
|
|
|