A rotating black hole causes the spin-axis of a test object to precess due to geodetic and gravitomagnetic (frame-dragging) effects. I will begin with how this precession arises by discussing the evolution equation of its intrinsic spin angular momentum, which is governed by the Fermi-Walker transport law. Then, to provide a concrete example of why this effect could be important, I will proceed with a study of how spin-precession affects pulsar observations. Pulsars are spinning neutron stars that emit beams of radiation, and when present around a supermassive black hole, serve as a realistic astrophysical approximation of a test spinning object. Towards this end, I will obtain the complete evolution of the beam vectors of pulsars moving on equatorial circular orbits in the Kerr spacetime, relative to asymptotic fixed observers, and establish that such spin-precession effects can indeed significantly modify observed pulse frequencies. In specific, we find that the observed pulse frequency rises sharply as the orbit shrinks, potentially providing a new way to locate horizons of Kerr black holes, even if observed for a very short time period. Potentially, measurements of such effects could serve as an independent estimate of the black hole spin parameter.
Seminar
Speaker
Prashant Kocherlakota (Tata Institute of Fundamental Research, Mumbai)
Date & Time
Tue, 21 May 2019, 15:30 to 17:00
Venue
Chern Lecture Hall, ICTS Campus, Bangalore
Resources
Abstract