Error message

Seminar
Speaker
Lakshmi Priya M.E. (Tel Aviv)
Date & Time
Mon, 30 October 2023, 14:00 to 14:50
Venue
Chern Lecture Hall & Online
Resources
Abstract

In this talk, I will discuss the relation between the growth of  harmonic functions and their nodal volume. Let \mathbb{R}^n \rightarrow \mathbb{R} be a harmonic function, where n\geq 2. One way to quantify the growth of  u in the  ball B(0,1) \subset \mathbb{R}^n is via the doubling index N, defined by

\sup_{B(0,1)}|u| = 2^N \sup_{B(0,\frac{1}{2})}|u|.

I will present a result, obtained jointly with A. Logunov and A. Sartori, where we prove an almost sharp result, namely:

\mathcal{H}^{n-1}(\{u=0\} \cap B(0,2)) \gtrsim_{n,\varepsilon} N^{1-\varepsilon},

where \mathcal{H}^{n-1} denotes the (n-1) dimensional Hausdorff measure

 

Zoom Link: https://us02web.zoom.us/j/88670406480
Meeting ID: 886 7040 6480